Resources | Subject Notes | Computer Science
Boolean logic is the foundation of digital circuits and computer science. It deals with logical operations on binary values (0 and 1, representing 'false' and 'true' respectively). This section will cover the standard logic gates and their symbols.
The fundamental Boolean operations are:
Symbol:
Truth Table:
Input A | Input B | Output (A AND B) |
---|---|---|
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Boolean Expression: $A \cdot B$ or $A \land B$
Symbol:
Truth Table:
Input A | Input B | Output (A OR B) |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
Boolean Expression: $A + B$ or $A \lor B$
Symbol:
Truth Table:
Input | Output (NOT Input) |
---|---|
0 | 1 |
1 | 0 |
Boolean Expression: $\overline{A}$ or $\neg A$
Symbol:
Truth Table:
Input A | Input B | Output (A NAND B) |
---|---|---|
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
Boolean Expression: $\overline{A \cdot B}$ or $\neg (A \land B)$
Symbol:
Truth Table:
Input A | Input B | Output (A NOR B) |
---|---|---|
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 0 |
Boolean Expression: $\overline{A + B}$ or $\neg (A \lor B)$
Symbol:
Truth Table:
Input A | Input B | Output (A XOR B) |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
Boolean Expression: $A \oplus B$ or $A \land \neg B$ or $\neg A \land B$
Boolean logic is used extensively in: