Identify and use standard logic gate symbols: AND, OR, NOT, NAND, NOR, XOR

Resources | Subject Notes | Computer Science

Boolean Logic - IGCSE Computer Science

Boolean Logic

Boolean logic is the foundation of digital circuits and computer science. It deals with logical operations on binary values (0 and 1, representing 'false' and 'true' respectively). This section will cover the standard logic gates and their symbols.

Basic Boolean Operations

The fundamental Boolean operations are:

  • AND: The output is 1 only if both inputs are 1.
  • OR: The output is 1 if at least one input is 1.
  • NOT: The output is the inverse of the input (1 becomes 0, and 0 becomes 1).

Logic Gate Symbols and Truth Tables

1. AND Gate

Symbol:

Suggested diagram: AND gate symbol

Truth Table:

Input A Input B Output (A AND B)
0 0 0
0 1 0
1 0 0
1 1 1

Boolean Expression: $A \cdot B$ or $A \land B$

2. OR Gate

Symbol:

Suggested diagram: OR gate symbol

Truth Table:

Input A Input B Output (A OR B)
0 0 0
0 1 1
1 0 1
1 1 1

Boolean Expression: $A + B$ or $A \lor B$

3. NOT Gate

Symbol:

Suggested diagram: NOT gate symbol

Truth Table:

Input Output (NOT Input)
0 1
1 0

Boolean Expression: $\overline{A}$ or $\neg A$

4. NAND Gate

Symbol:

Suggested diagram: NAND gate symbol

Truth Table:

Input A Input B Output (A NAND B)
0 0 1
0 1 1
1 0 1
1 1 0

Boolean Expression: $\overline{A \cdot B}$ or $\neg (A \land B)$

5. NOR Gate

Symbol:

Suggested diagram: NOR gate symbol

Truth Table:

Input A Input B Output (A NOR B)
0 0 1
0 1 0
1 0 0
1 1 0

Boolean Expression: $\overline{A + B}$ or $\neg (A \lor B)$

6. XOR Gate

Symbol:

Suggested diagram: XOR gate symbol

Truth Table:

Input A Input B Output (A XOR B)
0 0 0
0 1 1
1 0 1
1 1 0

Boolean Expression: $A \oplus B$ or $A \land \neg B$ or $\neg A \land B$

Applications of Boolean Logic

Boolean logic is used extensively in:

  • Digital circuit design (e.g., logic gates, flip-flops)
  • Computer programming (e.g., conditional statements, loops)
  • Database queries (e.g., using WHERE clauses with AND, OR, NOT)