Construct the truth table for each of the logic gates above

Resources | Subject Notes | Computer Science

Logic Gates and Logic Circuits

Objective

Construct the truth table for each of the logic gates.

1. AND Gate

The AND gate outputs a 1 (true) only if both inputs are 1 (true). Otherwise, it outputs a 0 (false).

Input A Input B Output
0 0 0
0 1 0
1 0 0
1 1 1

Symbol: $\land$

2. OR Gate

The OR gate outputs a 1 (true) if at least one of the inputs is 1 (true). It outputs a 0 (false) only if both inputs are 0 (false).

Input A Input B Output
0 0 0
0 1 1
1 0 1
1 1 1

Symbol: $\lor$

3. NOT Gate

The NOT gate inverts the input. If the input is 1 (true), the output is 0 (false), and vice versa.

Input Output
0 1
1 0

Symbol: $\neg$ or $\overline{}$

4. NAND Gate

The NAND gate is the inverse of the AND gate. It outputs a 0 (false) only if both inputs are 1 (true). Otherwise, it outputs a 1 (true).

Input A Input B Output
0 0 1
0 1 1
1 0 1
1 1 0

Symbol: $\overline{\land}$

5. NOR Gate

The NOR gate is the inverse of the OR gate. It outputs a 1 (true) only if both inputs are 0 (false). Otherwise, it outputs a 0 (false).

Input A Input B Output
0 0 1
0 1 0
1 0 0
1 1 0

Symbol: $\overline{\lor}$

6. XOR Gate (Exclusive OR)

The XOR gate outputs a 1 (true) if the inputs are different. It outputs a 0 (false) if the inputs are the same.

Input A Input B Output
0 0 0
0 1 1
1 0 1
1 1 0

Symbol: $\oplus$

7. XNOR Gate (Exclusive NOR)

The XNOR gate is the inverse of the XOR gate. It outputs a 1 (true) if the inputs are the same. It outputs a 0 (false) if the inputs are different.

Input A Input B Output
0 0 1
0 1 0
1 0 0
1 1 1

Symbol: $\bigoplus$