

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

4774874352

DESIGN & TECHNOLOGY

0445/43

Paper 4 Systems & Control

May/June 2023

1 hour

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Section A: answer all questions.
- Section B: answer one question.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Answer in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].
- All dimensions are in millimetres.

This document has 20 pages. Any blank pages are indicated.

Section A

Answer all questions in this section.

1	(a)	Name one example of each of the following natural structures.
		Natural frame structure
		Natural shell structure
		Natural mass structure
		[3]
	(b)	Sketch and name one example of a man-made mass structure.
		[4]
		[1]
2	Fig.	2.1 shows a diving springboard.
		X
		springboard
		Fig. 2.1
	(a)	Name one force that will act on the springboard, causing it to deform, when a diver jumps up
	(α)	and lands at point X .
		[1]
	(b)	The motion of the diver jumping and landing at point X will be converted into movement of the
		springboard. State the conversion of motion that will be caused by the diver jumping up and landing at point X .

...... motion to motion. [2]

3	(a)	Give two benefits of using CAD/CAM in batch production.	
		1	
			••••
		2	
			 [2
	/b\	Cive true drawbacks of using CAD/CAM for one off production	_
	(D)	Give two drawbacks of using CAD/CAM for one-off production.	
		1	
		2	
			[2
4	Fig.	4.1 shows two arrangements of spur gears.	
	drive	er, annous driver, and and	
	arrv	With it is a second of the sec	
		The structure of	
		driven driven	
		АВ	
		Fig. 4.1	
	Doc	scribe the changes in output that will occur for each arrangement of spur gears.	
	Des	scribe the changes in output that will occur for each arrangement of spur gears.	
	A		
			• • • •
	В		
			[4

5	Give one reason for lubricating steel spur gears in a mechanism.	
		. [1]
6	Give one result of not lubricating a mechanism running at high speed.	
		. [1]

7 Fig. 7.1 shows a microswitch inside the casing of a bandsaw.

Fig. 7.1

(a)	Give one reason why a microswitch is placed in this position.	
		[1]
(b)	The contact arrangement that will be needed on the microswitch is PTM. Describe what happens when a PTM switch is operated.	
		[2]

8 Fig. 8.1 shows two methods of connecting lamps in a circuit.

Fig. 8.1

Name each method of connection.

9 Complete Table 9.1 by adding the name of each circuit symbol shown.

Table 9.1

symbol	name
-	
-	

[3]

Section B

Answer **one** question from this section.

10 Fig. 10.1 shows a concrete beam with two reinforcing rods running through it.

Fig. 10.1

(i)	Give one reason for using reinforcing rods in this concrete beam.
	[1]
(ii)	The reinforcing rods are held in tension until the concrete has set. When the concrete is fully set the tension on the rods is released. Explain why this is a better method than laying the reinforcing rods in the concrete without tension on them.
	[3]
(iii)	The strain on one tensioning rod is calculated to be 0.00025 when the rod has extended by 0.3 mm. Calculate the original length of the rod.
	Use the formula $Strain = \frac{change in length}{original length}$

© UCLES 2023 0445/43/M/J/23

(a)

(iv)	Fig. 10.1 sh Explain the				ce of the b	eam.			
(b) Fig.		three meth							[2]
		, unce men	\	ining iongu	is or timbe	,1.			
stee	el plates						glued join	t	
bolts			nails			screws	a S		
	A		,	В			С		
				Fig. 10.2					
(i)	Give one b	enefit for e	ach meth	od.					
	A								
	В								
	C								
									[3]
(ii)	Give one d	Irawback fo	or each me	ethod.					
	A								

(iii)	Describe how moisture.	the fittings	used for	connecting	the	timber	could	be	made	resistant	to
				•••••							

- (c) Joints in structures often need to be reinforced.
 - (i) Use sketches and notes to show the use of the following reinforcement methods:
 - gussets
 - ribs
 - braces.

(ii) Fig. 10.3 shows a method of providing a right-angled joint in the framework of a timber building. Hardwood dowels are used to secure the joint.

Fig. 10.3

Name the force that will act on the dowels when force ${\bf X}$ is applied to the horizontal piece.

......[1]

(iii) Use sketches and notes to show **one** way of holding the parts of the joint securely in place without using screws, nails or dowels.

11 Fig. 11.1 shows a water spray bottle operated by finger pressure on the operating lever.

Fig. 11.1

(a)	(1)	the load (L), fulcrum (F) and effort (E) on the operating lever.	s o [3]
	(ii)	Explain what is meant by the mechanical advantage of a lever.	
	(:::\		[2.
	(iii)	Give one way of increasing the mechanical advantage of the lever in Fig. 11.1.	
			[י]
	(iv)	State the order of lever used in the water spray bottle.	

(b) Fig. 11.2 shows a locomotive used on a rack and pinion mountain railway. The powered driving wheel on each side is connected to the other wheels with link rods.

Fig. 11.2

(1)	relies on friction between the driving wheels and the rails.	that
(ii)	Give two different uses for a rack and pinion gear.	[၁]
(,	1	
	2	
		[2]
(iii)	Describe the reason for using link rods to connect the wheels rather than gears or a and pulley.	belt
		[2]

	12
(iv)	The driving wheels have cut-outs to reduce weight. The area opposite to where the link rods are fitted is left solid. Give two ways that these features can improve the efficiency of the drive system.
	2
	[2]
	g. 11.3 shows a clock with an enlarged view of the winding mechanism and the key used to nd the clock.
*	key square shaft for key winding mechanism
	Fig. 11.3
(i)	Draw on the enlarged view in Fig. 11.3 to show the direction that the key will be turned. [1]
(ii)	Name the winding mechanism in Fig. 11.3.
	and
(iii)	Describe the reason for using this mechanism.

(d) Fig. 11.4 shows a compound gear train. The 15t and 30t gears **B** are locked together by a pin.

Fig. 11.4

Calculate the speed of the driven gear D when the driver gear A rotates at 336 rpm.
[4

12 (a) Fig. 12.1 shows three methods of making connections to an electronic circuit.

Fig. 12.1

(i)	Give one benefit for each method.	
	terminal block	
	plug and socket	
	spade connector	
		[3]
(ii)	State two health and safety precautions other than Personal Protective Equ (PPE) that should be taken when constructing a printed circuit board (PCB).	uipment
	1	
	2	
		[2]

(iii) Fig. 12.2 shows details of an IC holder. Add the IC holder pin numbers to the circles.

Fig. 12.2

(iv) Explain why a commercial manufacturer would be likely to solder ICs directly into a circuit rather than using an IC holder.

[2]

.....[

(b) Fig. 12.3 shows details of a seven segment display taken from a catalogue.

Fig. 12.3

(i) Shade the segments on Fig. 12.3 that will be lit to display the number '2'. [1]

(ii)	The display is available in a common anode or a common cathode version. Explain how they are different and why there is a need for both versions.
	[3]
(iii)	Current limiting resistors are used on each segment of the display. The supply voltage to be used is +9V and the forward voltage of each LED segment is 1.65V. Calculate the value of resistor needed to limit the current through each LED segment to 30 mA.
	[3]

(c) A frost monitor is required for a greenhouse to sound an alarm when the temperature falls below 3°C.

Fig. 12.4 shows part of a simulated CAD circuit for the greenhouse frost monitor.

Fig. 12.4

(i)	Give two benefits of using a simulated CAD circuit.
	1
	2
	roi
	[2]
(ii)	State the names of components A and B .
	Component A
	Component B
	[2]
(iii)	Describe the purpose of the operational amplifier CA3140E.
	[3]

(iv) Fig. 12.5 shows the final circuit for the output of the greenhouse frost monitor.

Fig. 12.5

Use the following statements to complete the descriptions of the output below. Not all statements will be used.

LED 1 is on

LED 2 is on

both LEDs are on

LED 1 and the buzzer are both on

LED 2 and the buzzer are both on.

when the operational amplifier output is low	
When the operational amplifier output is high	
	[2]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.