Cambridge IGCSE[™] | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | 864879959 BIOLOGY 0610/52 Paper 5 Practical Test October/November 2023 1 hour 15 minutes You must answer on the question paper. You will need: The materials and apparatus listed in the confidential instructions ## **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do **not** use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. ## **INFORMATION** - The total mark for this paper is 40. - The number of marks for each question or part question is shown in brackets []. | For Examiner's Use | | | | | |--------------------|--|--|--|--| | 1 | | | | | | 2 | | | | | | 3 | | | | | | Total | | | | | This document has 12 pages. Any blank pages are indicated. 1 You are going to investigate the effect of temperature on the activity of amylase. Amylase is an enzyme that catalyses the breakdown of starch to form reducing sugars. Read all the instructions but DO NOT DO THEM until you have drawn a table for your results in the space provided in 1(a)(i). You should use the safety equipment provided while you are doing the practical work. Step 1 Use the pen to draw a line down the middle of the spotting tile. Write the numbers and the letters **C** and **H** on the spotting tile, as shown in Fig. 1.1. Fig. 1.1 - Step 2 Place one drop of iodine solution into each of the labelled dimples on the spotting tile. - Step 3 Label one test-tube **C** and the other test-tube **H**. Place the test-tubes in the test-tube rack. - Step 4 Use the syringe to put 2 cm³ of **starch suspension** into test-tube **C** and into test-tube **H**. - Step 5 Place test-tube **C** and the test-tube labelled **amylase C** into the water in beaker **C**. Start the stop-clock. - Step 6 After three minutes, stop the stop-clock and pour the contents of test-tube **amylase C** into test-tube **C**. - Restart the stop-clock, wait for 30 seconds and then continue to step 7. - Step 7 Use a pipette to remove a sample of liquid from test-tube **C**. - Place two drops of this sample into the dimple labelled **C1** on your spotting tile. Return the rest of the sample in the pipette to test-tube **C**. - Step 8 Observe the colour of the liquid in dimple C1. Record this colour in your table in 1(a)(i). - Step 9 Repeat step 7 and step 8 at 30-second intervals, using the dimples labelled **C2**, **C3**, **C4**, **C5** and **C6**. - Step 10 Raise your hand when you are ready for hot water to be added to beaker H. - Step 11 Place test-tube **H** and test-tube **amylase H** into the hot water in beaker **H**. Reset the stop-clock to zero. Start the stop-clock again. - Step 12 After three minutes, stop the stop-clock and pour the contents of test-tube **amylase H** into test-tube **H**. Restart the stop-clock, wait for 30 seconds and then continue to step 13. - Step 13 Use a pipette to remove a sample of the liquid from test-tube **H**. - Place two drops of this sample into the dimple labelled **H1** on your spotting tile. Return the rest of the sample in the pipette to test-tube **H**. - Step 14 Observe the colour of the liquid in dimple **H1**. Record this colour in your table in **1(a)(i)**. - Step 15 Repeat step 13 and step 14 at 30-second intervals, using the dimples labelled **H2**, **H3**, **H4**, **H5** and **H6**. - (a) (i) Prepare a table for your results. [4] | (ii) | State the colour of iodine solution when starch is present. | | |---------|--|---------| | | | [1] | | (iii) | State a conclusion for your results. | | | | | | | | | | | | | [1] | | (iv) | State the independent variable in this investigation. | | | | | [1] | | (v) | State two variables that were kept constant in this investigation. | | | | 1 | | | | | | | | 2 | | | | |
[2] | | (b) (i) | Explain why the method used in this investigation does not allow you to obtain accurate time for the breakdown of starch. | | | | | | | | | •••• | | | | [1] | | (ii) | The temperature of the water in the beakers during the investigation was a source error. | of | | | Describe how you could improve the method to reduce this error. | | | | | | | | | | | | | [1] | | | [Total: | 11] | | 2 (a) | Milk contains fats. The enzyme lipase catalyses the breakdown of fats to form fatty acids and glycerol. The fatty acids cause the pH of the milk to decrease. | |-------|---| | | Plan an investigation to determine the effect of lipase concentration on the breakdown of fats in milk. | [6] | | (b) | | | | Describe the method you would use to do the emulsion test. | | | | | | | | | | | | [2] | | | [Total: 8] | **3** Fig. 3.1 is a photograph of a type of seaweed called bladder wrack. The bladders help the seaweed float in water. Fig. 3.1 (a) (i) Draw a large diagram of the bladder wrack seaweed shown in Fig. 3.1. | | , | |------|--| | (ii) | Line PQ on Fig. 3.1 represents the length of one bladder on the bladder wrack seaweed. | | | The actual length of the bladder is 19 mm. | | | Measure the length of line PQ on Fig. 3.1. | | | length of line PQ mm | | | Calculate the magnification of the photograph using the formula and your measurement. | | | $magnification = \frac{\text{length of line } \mathbf{PQ}}{\text{actual length of the bladder}}$ | | | Give your answer to two decimal places. | | | Space for working. | | | | | | | | | | | | | | | [3] | (iii) Seaweeds are species of algae that live in the sea. Fig. 3.2 shows photographs of bladder wrack seaweed and a different species of seaweed called egg wrack. The photographs are the same magnification. Fig. 3.2 | State two ways, visible in Fig. 3.2, that bladder wrack is different from egg wr | ack. | |---|------| | 1 | | | | | | | | | 2 | | | | | | | | **(b)** Bladder wrack is found on the seashore and is exposed to the air when it is not covered by water at certain times of day. Students investigated how rapidly bladder wrack lost water. They used this method: - Three samples of bladder wrack were collected. - The samples were blotted with tissue to remove any water on the surface of the seaweed. - The initial mass of each sample was recorded. - The samples were hung from a piece of string stretched between two stands. - The mass of each sample was recorded every 30 minutes for the first two hours and then every hour for a further three hours. | 2 | <u>′</u> | | | | | |----------------|---|--|--|----------------------------------|----------| | _ | - 11 04 1 | | | | | | | | nows the initial material mate | asses recorded by the | e students and the fil | nai mas | | | | | Table 3.1 | | | | | | sample | initial mass of
bladder wrack/g | final mass of
bladder wrack/g | | | | | 1 | 178 | 82 | | | | | 2 | 184 | 144 | | | | | 3 | 167 | 70 | | | | | | | | | | | State what is | | nalous result. | | | | S | State what is | nal masses recorde | ed is anomalous. | | | | S | State what is | nal masses recorde | ed is anomalous. | | | | ,
S

 | State what is | nal masses recorde | ed is anomalous. | | | | S

 | State what is | nal masses records meant by an anor | ed is anomalous. | for the final mass of | the blad | | ,
S

 | State what is | nal masses recorders meant by an anor | ed is anomalous. malous result. culated the mean value | for the final mass of | the blad | | S | State what is Describe how wrack. | nal masses records meant by an anor | ed is anomalous. malous result. culated the mean value 3.1, calculate the mean | for the final mass of | the blad | | S | Describe how wrack. Jsing the information of the bladder | nal masses records meant by an anor with the students calculation in Table 3 | ed is anomalous. malous result. culated the mean value 3.1, calculate the mean fter five hours. | for the final mass of | the blad |% [2] (c) The students repeated their investigation using egg wrack seaweed. Table 3.2 shows the mean percentage decrease in the mass of the egg wrack samples throughout the investigation. Table 3.2 | time/minutes | mean percentage decrease in the mass of the egg wrack | |--------------|---| | 30 | 0 | | 60 | 13 | | 90 | 22 | | 120 | 27 | | 180 | 38 | | 240 | 46 | | 300 | 51 | Using the data in Table 3.2, plot a line graph on the grid to show the effect of time on the mean percentage decrease in the mass of the egg wrack. | Idi Maliy beoble eat seawee | (d) | Many people | eat seaweed | |-----------------------------|-----|-------------|-------------| |-----------------------------|-----|-------------|-------------| | State the names of the reagents that can be used to test seaweed for protein and vitan | nin C. | |--|--------| | protein | | | vitamin C | | | | [2] | [Total: 21] ## **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.