Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education | CANDIDATE
NAME | | | | |-------------------|-----------------------------|---------------------|-------------------| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | CHEMISTRY | | | 0620/32 | | Paper 3 Theor | y (Core) | | May/June 2019 | | | | | 1 hour 15 minutes | | Candidates ans | swer on the Question Paper. | | | ## **READ THESE INSTRUCTIONS FIRST** No Additional Materials are required. Write your centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. Electronic calculators may be used. A copy of the Periodic Table is printed on page 20. You may lose marks if you do not show your working or if you do not use appropriate units. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. This syllabus is regulated for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate. This document consists of 18 printed pages and 2 blank pages. 1 The diagrams show part of the structures of five substances, A, B, C, D and E. (a) Answer the following questions about these structures. Each structure may be used once, more than once or not at all. State which one of these structures, A, B, C, D or E: | (i) | is an alcohol | | |-------|---|-------| | | | [1] | | (ii) | is an ionic compound | | | | | [1] | | (iii) | · | | | | | [1] | | (iv) | contributes to acid rain | - 4 - | | /s./\ | reacts with an acid to form a calt and water | [1] | | (v) | reacts with an acid to form a salt and water. | [1] | | | | [,] | | Sul | bstance E is a compound. | | | Wh | nat is meant by the term compound? | | | | | | [Total: 6] © UCLES 2019 0620/32/M/J/19 (b) | 2 This question is about iron and compounds of iro | 2 | This | question | is | about | iron | and | com | pounds | of iror | |--|---|------|----------|----|-------|------|-----|-----|--------|---------| |--|---|------|----------|----|-------|------|-----|-----|--------|---------| | Thi | s que | estion is about iron and compounds of iron. | | |-----|--------------|--|------| | (a) | | n can be converted into steel in a basic oxygen converter. If you can be converted into steel in a basic oxygen converter. If you can be converted into steel in a basic oxygen converter. | | | | (i) | Oxygen reacts with the carbon in the impure iron to form carbon dioxide. | | | | | Write a chemical equation for this reaction. | | | | | | [2] | | | (ii) | Basic oxides in the lining of the converter react with impurities such as sulfur dioxide form slag. | e to | | | | What type of oxide is sulfur dioxide? Give a reason for your answer. | | | | | | | | | | | [2] | | (b) | | $n(III)$ chloride, Fe_2Cl_6 , is produced when iron is heated with chlorine. e diagram shows the apparatus used. Draw an arrow on the diagram to show where the apparatus is heated. | | | | dry
lorin | iron wire in a ceramic boat flask iron(III) chloride collects here | | | | | | | | | | drying agent | [4] | | | /::\ | Iran (III) ablavida undarga an aublimatian | [1] | | | (ii) | Iron(III) chloride undergoes sublimation. | | | | | What is meant by the term sublimation? | | | | | | [1] | | | (iii) | Suggest why the iron(III) chloride is collected in the flask and not in the ceramic boat. | | | (| (iv | At higher | temperatures, | iron(III |) chloride | decomposes | |---|-----|-----------|---------------|----------|------------|------------| | | | | | | | | | | $Fe_2Cl_6 \xrightarrow{heat} 2FeCl_2 + Cl_2$ | | |-----|---|-----| | | Explain why this is a decomposition reaction. | | | | | | | | | [1] | | (c) | Iron reacts with chlorine and other halogens. | | | | Name two other substances which react with iron. | | | | 1 | | | | 2 | | | | | [2] | | (d) | Describe a test for iron(II) ions. | | | | test | | | | | | [Total: 13] [2] 3 (a) The table shows the percentage by mass of the elements in the Earth's crust and in the oceans. | element | percentage by mass in the Earth's crust | percentage by mass in the oceans | |----------------|---|----------------------------------| | aluminium | 8.20 | 0.00 | | calcium | 3.60 | 0.05 | | chlorine | 0.05 | 1.80 | | hydrogen | 0.22 | 11.00 | | iron | 5.00 | 0.00 | | oxygen | 46.60 | 85.80 | | silicon | 29.50 | 0.00 | | sodium | 2.80 | 1.15 | | other elements | 4.03 | | | total | 100.00 | 100.00 | Answer these questions using only the information in the table. | (1) | Deduce the percentage by mass of other elements present in the oceans. | | |-------|--|-------| | | % | [1] | | (ii) | Which element is present in the Earth's crust in the greatest percentage by mass? | | | | | [1] | | (iii) | Give two major differences in the percentage by mass of the elements in the Earth's cand in the oceans. | crust | | | 1 | | | | | | | | 2 | | | | | | | | | [2] | | (b) | Alu | minium oxide is a compound present in aluminium ore. | | |-----|-------|---|------| | | (i) | Name an ore which contains aluminium oxide. | | | | | | [1] | | | (ii) | Predict the products of the electrolysis of molten aluminium oxide at: | | | | | the positive electrode | | | | | the negative electrode. | | | | | | [2] | | | (iii) | Suggest why aluminium is extracted by electrolysis and not by reduction with carbon. | | | | | | [1] | | | | [Total | : 8] | | 4 | This question | is about bromine and | compounds of bromine. | |---|---------------|----------------------|-----------------------| |---|---------------|----------------------|-----------------------| | (a) | Use | the | kinetic | particle | model | to | describe | the | arrangement | and | type | of | motion | of | the | |-----|------|------|---------|----------|-------|----|----------|-----|-------------|-----|------|----|--------|----|-----| | | mole | cule | s in: | | | | | | | | | | | | | | _ | braning age | |---|----------------| | | | | | | | | .,, | | | liquid promine | | bromine gas. |
 |
 |
 | |--------------|------|------|------| | | | | | | |
 |
 |
 | **(b)** The graph shows how the volume of bromine gas changes with temperature. The pressure is kept constant. Describe how the volume of the bromine gas changes with temperature. (c) (i) Complete the word equation to show the halogen and halide compound which react to form the products bromine and potassium chloride. [2] [4] (ii) Explain, in terms of the reactivity of the halogens, why aqueous bromine will **not** react with aqueous potassium chloride.[1] | | (d) | Bromine | reacts | with | hydroge | en sulfide, | H₂S. | |--|-----|---------|--------|------|---------|-------------|------| |--|-----|---------|--------|------|---------|-------------|------| (e) (i) Complete the chemical equation for this reaction. + $$H_2S \rightarrow$$HBr + S [2] (ii) The energy level diagram for this reaction is shown. | Explain how this diagram shows that the reaction is exothermic. | | |---|--------| | | | | | 1] | | Describe a test for bromide ions. | | | test | | | observations[2 |
2] | [Total: 13] | 5 | Methane, | ethane | and | ethene | are | hydrocarbons | |---|----------|--------|-----|--------|-----|--------------| | | | | | | | | | | (a) | Draw the structure | of a molecule of ethane. | Show all of the atoms | and all of the bonds | |--|-----|--------------------|--------------------------|-----------------------|----------------------| |--|-----|--------------------|--------------------------|-----------------------|----------------------| [1] **(b)** Which **one** of these compounds belongs to the same homologous series as methane? Draw a circle around the correct answer. butane methanoic acid methanol propene [1] (c) Ethene can be manufactured by cracking. (i) Complete the sentence about cracking using words from the list. (ii) State **two** conditions needed for cracking. 1..... (d) Poly(ethene) is made by the polymerisation of ethene. Which **one** of the structures represents part of a poly(ethene) molecule? Tick **one** box. - (e) Nylon is also a polymer. - (i) Give one common use of nylon.[1] (ii) Part of the structure of nylon is shown. How many different types of atom are shown in this structure?[1] (f) The structure of a monomer used to make a polymer is shown. | (1) | What structural feature of this molecule shows that it is unsaturated? | | |-----|--|--| | | | |[1] (ii) Describe a test to show that this compound is unsaturated. test observations[2] [Total: 12] | | dilute sulfuric acid and an excess of cobalt(II) carbonate. | | | | | | | | | | | | | |-----|---|-------------------------|----------------------|---------|---------------------|-----------|--|--|--|--|--|--|--| | ••• | C | oSO ₄ . | e to calculate the rel | ative formula ma | ss of a | anhydrous coba | olt(II) s | | | | | | | | | | type of atom | number of atoms | relative atomic r | nass | | | | | | | | | | | | cobalt | | | | | | | | | | | | | | | sulfur | 1 | 32 | | 1 × 32 = 32 | | | | | | | | | | | oxygen | | | | | | | | | | | | | | | | | | | a mass = | | | | | | | | | | | | | | ne and | neutrons in the | oxygei | | | | | | | | | | omplete the table | to show the number own. | of electrons, protor | is and | | | | | | | | | | | | | | number of neutrons | nı | umber of
protons | | | | | | | | | | | | number of | number of | nı | | | | | | | | | | | | nd cobalt ion show | number of | number of | nı | | | | | | | | | | | | nd cobalt ion show | number of | number of | nı | protons | | | | | | | | | | ar | 17/80
59/27Co ²⁺ | number of | number of neutrons | nı | protons | | | | | | | | | (e) An alloy of cobalt, chromium and molybdenum is used to make cutlery. | (i) | Which one of the following diagrams best represents the structure of the alloy? | |-----|---| | | Draw a circle around the correct answer | | Α | В | С | D | |---|---|---|-----| | | | | [1] | (ii) Which **one** of these substances is also used to make cutlery? Tick **one** box. | mercury | | |-----------------|--| | sodium | | | stainless steel | | | graphite | | [1] [Total: 13] Question 7 starts on the next page. | 7 | A student investigates | the | rate | of | reaction | of | magnesium | ribbon | with | an | excess | of | dilute | |---|------------------------|-----|------|----|----------|----|-----------|--------|------|----|--------|----|--------| | | hydrochloric acid. | | | | | | | | | | | | | $$\rm Mg \ + \ 2HC{\it l} \ \rightarrow \ MgC{\it l}_{\it 2} \ + \ H_{\it 2}$$ (a) Name the salt formed when magnesium reacts with dilute hydrochloric acid.[1] (b) The graph shows how the volume of hydrogen produced changes with time. | (i) | Describe how the rate of reaction changes with time. | |-----|--| | | Use the graph to explain your answer | (ii) How many seconds did it take to collect the first 25 cm³ of hydrogen?s [1] | All other conditions are kept the same. | | |--|-----| | Draw a line on the grid for the experiment using a higher temperature. | [2] | (iv) If 2.4g of magnesium is used, 0.2g of hydrogen is produced. (iii) The experiment is repeated at a higher temperature. Calculate the mass of magnesium needed to produce 0.8g of hydrogen using an excess of dilute hydrochloric acid. mass of magnesium = g [1] [Total: 7] | (a) | OXI | des of nitrogen are po | ollutants in the | aır. | | | |-----|------|--|-------------------------|-------------------|-----------------------|--------------| | | (i) | One source of oxide: | s of nitrogen in | n the air is from | n the manufacture of | nitric acid. | | | | State one other sour | ce of oxides o | of nitrogen in th | e air. | | | | | | | | | [1] | | | (ii) | State one adverse e | ffect of oxides | of nitrogen on | health. | | | | | | | | | [1] | | (| iii) | Oxides of nitrogen a | ct as catalysts | | | | | | | What is meant by the | e term <i>catalys</i> : | t? | | | | | | | | | | | | | | | | | | [1] | | (| iv) | Oxides of nitrogen a | re formed duri | ng the manufa | cture of nitric acid. | | | | | Which one of the pH
Draw a circle around | | | itric acid? | | | | | pH 1 | pH 7 | pH 10 | pH 14 | [1] | | (b) | Nitr | ogen is present in fer | tilisers. | | | | | | Wh | y are fertilisers added | to the soil wh | ere crops are | grown? | | | | | | | | | | | | | | | | | [1] | (c) The table shows some observations about the reactivity of four metals with dilute hydrochloric acid. | metal | reaction with hydrochloric acid | |-----------|-----------------------------------| | calcium | a rapid stream of bubbles is seen | | lead | no bubbles are seen | | manganese | a slow stream of bubbles is seen | | tin | a few bubbles slowly form | Use the information in the table to put the **four** metals in order of their reactivity. Put the least reactive metal first. | | least reactive most reactive | [2] | |-----|--|-----| | (d) | Calcium melts at 839 °C and boils at 1484 °C. What is the physical state of calcium at 1600 °C? | | | | | [1] | | | [Total: | 8] | ## **BLANK PAGE** ## **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge. The Periodic Table of Elements | | \rightarrow | 2
He | helium
4 | 10 | Ne | neon
20 | 18 | Ā | argon
40 | 36 | 궃 | krypton
84 | 54 | Xe | xenon
131 | 98 | R | radon | | | | |-------|-------------|---------|---------------|---------------|--------------|------------------------------|----|----|------------------|----|----|-----------------|----|----------|------------------|-------|-------------|-----------------|--------|-----------|--------------------| | | II/ | | | 6 | Щ | fluorine
19 | 17 | Cl | chlorine
35.5 | 35 | ğ | bromine
80 | 53 | П | iodine
127 | 85 | ¥ | astatine
- | | | | | | IA | | | 80 | 0 | oxygen
16 | 16 | ഗ | sulfur
32 | 34 | Se | selenium
79 | 52 | <u>L</u> | tellurium
128 | 84 | Ъ | moloum
– | 116 | | livermorium
- | | | > | | | 7 | z | nitrogen
14 | 15 | ۵ | phosphorus
31 | 33 | As | arsenic
75 | 51 | Sb | antimony
122 | 83 | <u>B</u> | bismuth
209 | | | | | | 2 | | | 9 | ပ | carbon
12 | 14 | :S | silicon
28 | 32 | Ge | germanium
73 | 20 | Sn | tin
119 | 82 | Pb | lead
207 | 114 | Εl | flerovium
- | | | ≡ | | | 2 | В | boron
11 | 13 | Ν | aluminium
27 | 31 | Ga | gallium
70 | 49 | In | indium
115 | 81 | <i>1</i> 1 | thallium
204 | | | | | | | | | | | | | | | 30 | Zu | zinc
65 | 48 | S | cadmium
112 | 80 | Нg | mercury
201 | 112 | ü | copernicium
- | | | | | | | | | | | | 29 | Cn | copper
64 | 47 | Ag | silver
108 | 62 | Au | gold
197 | 111 | Rg | roentgenium
- | | Group | | | | | | | | | | 28 | Z | nickel
59 | 46 | Pd | palladium
106 | 78 | చ | platinum
195 | 110 | Ds | darmstadtium
- | | Ď | | | | | | | | | | 27 | ဝိ | cobalt
59 | 45 | 格 | rhodium
103 | 77 | 'n | iridium
192 | 109 | Ĭ | meitnerium
- | | | | - I | hydrogen
1 | | | | | | | 26 | Fe | iron
56 | 44 | Ru | ruthenium
101 | 92 | Os | osmium
190 | 108 | Hs | hassium
- | | | | | | | | | 1 | | | 25 | Mn | manganese
55 | 43 | ည | technetium
- | 75 | Re | rhenium
186 | 107 | Bh | bohrium
– | | | | | | _ | pol | ass | | | | 24 | ပ် | chromium
52 | 42 | Mo | molybdenum
96 | 74 | > | tungsten
184 | 106 | Sg | seaborgium
- | | | | | Key | atomic number | atomic symbo | name
relative atomic mass | | | | 23 | > | vanadium
51 | 41 | q | niobium
93 | 73 | Б | tantalum
181 | 105 | o
O | dubnium
- | | | | | | | atc | rel | | | | 22 | j | titanium
48 | 40 | Zr | zirconium
91 | 72 | Ξ | hafnium
178 | 104 | ¥ | rutherfordium
- | | | | | | | | | | | | 21 | Sc | scandium
45 | 39 | > | yttrium
89 | 57–71 | lanthanoids | | 89–103 | actinoids | | | | = | | | 4 | Be | beryllium
9 | 12 | Mg | magnesium
24 | 20 | Ca | calcium
40 | 38 | Š | strontium
88 | 56 | Ba | barium
137 | 88 | Ra | radium | | | _ | | | 8 | = | lithium
7 | 7 | Na | sodium
23 | 19 | × | potassium
39 | 37 | & | rubidium
85 | 22 | S | caesium
133 | 87 | Ļ | francium
- | | 71 | lutetium
175 | 103 | ۲ | lawrencium
- | | |-----------------|---------------------|-----|-----------|---------------------|-----| | ° \$ | ytterbium
173 | 102 | 8 | nobelium | | | ₆₉ L | thulium
169 | 101 | Md | mendelevium
- | | | 68
L | erbium
167 | 100 | Fm | fermium | _ | | 67
HO | holmium
165 | 66 | Es | einsteinium | | | 99
2 | dysprosium
163 | 86 | ర్ | californium | _ | | 65
Th | terbium
159 | 26 | Ř | berkelium | _ | | ² و | gadolinium
157 | 96 | Cm | curium | | | 63
T | europium
152 | 92 | Am | americium | | | .Sm | samarium
150 | 94 | Pu | plutonium | | | P ₀ | promethium
- | 93 | ď | neptunium
- | _ | | 09
V | neodymium
144 | 92 | \supset | uranium
238 | , | | 59
P | praseodymium
141 | 91 | Ра | protactinium
231 | | | 88 Q | cerium
140 | 06 | 드 | thorium
232 | 101 | | 57 | lanthanum
139 | 68 | Ac | actinium | _ | lanthanoids actinoids The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).