

Cambridge IGCSE[™]

CHEMISTRY 0620/23

Paper 2 Multiple Choice (Extended)

October/November 2022

45 minutes

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet

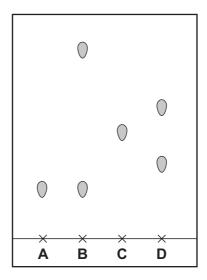
Soft clean eraser

Soft pencil (type B or HB is recommended)

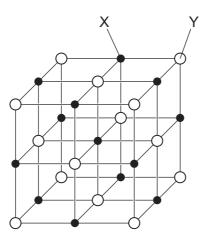
INSTRUCTIONS

There are forty questions on this paper. Answer all questions.

- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.


INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.



- 1 Which gas diffuses the most slowly?
 - A CH₄
- B CO₂
- \mathbf{C} \mathbf{H}_2
- NH₃
- 2 The chromatogram from four different substances is shown.

Which pure substance has the largest R_f value?

3 The structure of sodium chloride can be represented as shown.

What are X and Y?

	Х	Y
Α	metal atom	non-metal atom
В	negative ion	electron
С	positive ion	negative ion
D	positive ion	electron

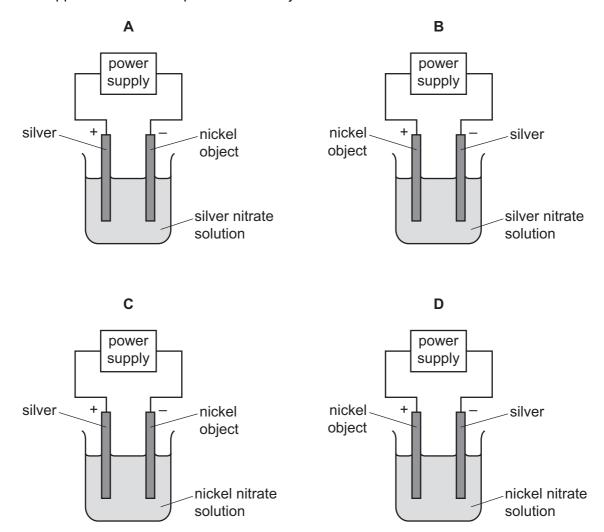
4	Wh	nich	two p	articles	hav	e the same	electro	oni	c structu	re?			
	Α	С	and C)2-									
	В	F	and l	nd Na									
	С	Κ¹	and s	S ²⁻									
	D	M	g and	Na⁺									
5	Wh	nich	state	ments a	bou	t isotopes of	f the s	am	e eleme	nt are co	rred	ct?	
			1			atoms which ber of electr					Ιp	roperties because they hav	e the
			2	•		atoms which			the sar	ne numb	er	of electrons and neutron	s bu
			3			ntoms which f neutrons.	have	the	e same r	number o	f el	lectrons and protons but dif	eren
	A	1	and 2		В	1 and 3	(2	2 only	ı	D	3 only	
6	Wh	nat i	s the	total nur	nbe	r of shared o	electro	ons	in a mo	ecule of	me	thanol, CH₃OH?	
	A	4			В	5	(2	8	İ	D	10	
7	Wh	nich	row a	bout the	e str	uctures and	uses	of (diamond	and grap	ohit	te is correct?	
						structure						use	
	Δ	١	diaı	mond ha		structure giant covale	ent str	uct	ure	diamon	ıd i	use s used to make electrodes	
	A				as a								
		3	dian	nond ha	as a	giant covale	lent st	ruc	ture	diamon	d is	s used to make electrodes	

8 Caffeine is a stimulant found in coffee.

caffeine

Which formula represents caffeine?

- **A** $C_7H_{10}N_4O_2$
- **B** $C_8H_{10}N_3O_2$
- $\mathbf{C} \quad C_8 H_{10} N_4 O_2$
- $D C_8H_{11}N_4O_2$


9 The equation for the reaction between hydrogen sulfide, H₂S, and oxygen is shown.

$$2H_2S + 3O_2 \rightarrow 2SO_2 + 2H_2O$$

Which mass of oxygen is required to react with 5.1 g of hydrogen sulfide?

- **A** 2.4 g
- **B** 4.8 g
- **C** 7.2 g
- **D** 14.4 g

10 Which apparatus is used to plate a nickel object with silver?

11 When an acid is added to an alkali, the temperature of the reaction mixture rises.

Which words describe this reaction?

- A decomposition and endothermic
- **B** decomposition and exothermic
- C neutralisation and endothermic
- **D** neutralisation and exothermic

12 Some properties of four fuels are shown.

Which fuel is a gas at room temperature and makes two products when it burns in a plentiful supply of air?

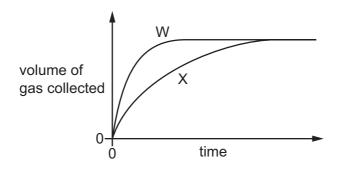
	fuel	formula	melting point /°C	boiling point /°C
Α	hydrogen	H_2	-259	-253
В	methane	CH₄	-182	-164
С	octane	C ₈ H ₁₈	– 57	126
D	wax	C ₃₁ H ₆₄	60	400

13 Dinitrogen tetroxide, N_2O_4 , is converted into nitrogen dioxide, NO_2 , in a reversible reaction.

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

The forward reaction is endothermic.

Which conditions give the highest equilibrium yield of nitrogen dioxide?


	pressure /atmospheres	temperature					
Α	2	high					
В	2	low					
С	50	high					
D	50	low					

14 Dilute hydrochloric acid is reacted with excess calcium carbonate and the total volume of gas is measured at regular intervals.

The results are shown by line W on the graph.

The experiment is repeated but with one change.

The results of the second experiment are shown by line X on the graph.

Which change is made in the second experiment?

- A A catalyst is added.
- **B** The calcium carbonate is broken into smaller pieces.
- **C** The concentration of the dilute hydrochloric acid is increased.
- **D** The temperature of the dilute hydrochloric acid is decreased.
- 15 When hydrated copper(II) sulfate is heated, it produces white copper(II) sulfate. When water is added, the white copper(II) sulfate turns blue.

Which type of reaction is shown by these observations?

- A decomposition
- **B** displacement
- C redox
- **D** reversible
- **16** When magnesium is heated with zinc oxide a reaction occurs.

The equation is shown.

$$Mg + ZnO \rightarrow MgO + Zn$$

Which substance is oxidised?

- **A** magnesium
- **B** magnesium oxide
- **C** zinc
- D zinc oxide

17 The equation for the reaction between ethene and hydrogen is shown.

$$CH_2=CH_2(g) + H_2(g) \rightarrow CH_3-CH_3(g)$$

The bond energies are shown.

bond	bond energy in kJ/mol
C=C	612
H–H	436
C–C	348
C–H	416

What is the overall energy change during this reaction?

- **A** -284 kJ/mol
- **B** -132 kJ/mol
- C +132 kJ/mol
- **D** +284 kJ/mol

18 Ethanoic acid reacts with water to produce an acidic solution.

Which row describes the roles of ethanoic acid and water in this reaction?

	ethanoic acid	water
Α	accepts a proton	donates a proton
В	accepts an electron	donates an electron
С	donates a proton	accepts a proton
D	donates an electron	accepts an electron

19 Tests are done on an aqueous solution.

test	a few drops of aqueous sodium hydroxide are added	aqueous sodium hydroxide is added in excess
observation	white precipitate	precipitate dissolves to give a colourless solution

Which cations produce these observations?

- 1 aluminium, Al^{3+}
- 2 calcium, Ca²⁺
- 3 zinc, Zn²⁺
- **A** 1 and 2 **B** 1 and 3
- C 1 only
- **D** 2 and 3

20 Ammonia, NH₃, dissolves in water to form a dilute solution of ammonium hydroxide, NH₄OH.

The reaction is reversible and exists as an equilibrium mixture.

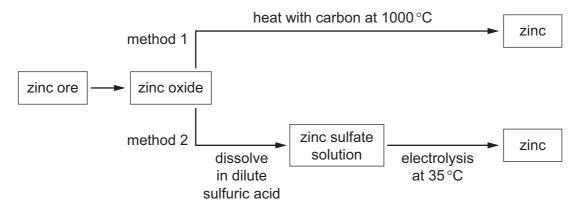
$$NH_3(g) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

Which statement about the mixture is correct?

- **A** All of the ammonia and water molecules have turned into ions.
- **B** The ammonia and water molecules have stopped changing into ions.
- C The concentrations of the ammonia molecules and ammonium ions are always equal.
- **D** The rate of the formation of ammonia molecules is equal to the rate of formation of the ammonium ions.
- **21** Elements E and F are in Group I of the Periodic Table.

E has a higher melting point than F.

Elements J and L are in Group VII of the Periodic Table.


J has a higher density than L.

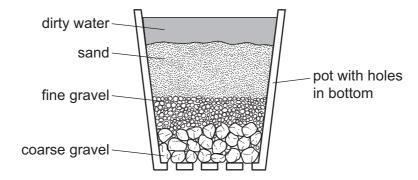
Which elements have the highest atomic numbers in each group?

- **A** E and J
- **B** E and L
- **C** F and J
- **D** F and L

- 22 Which metal forms ions with one oxidation state?
 - A aluminium
 - **B** chromium
 - C copper
 - **D** iron
- 23 How does the nature of the oxides change across Period 3 from sodium to chlorine?
 - A basic → amphoteric → acidic
 - **B** basic \rightarrow acidic \rightarrow amphoteric
 - **C** amphoteric \rightarrow basic \rightarrow acidic
 - **D** acidic \rightarrow amphoteric \rightarrow basic
- **24** Zinc is a metal with a boiling point of 907 °C.

Two methods of making zinc are shown.

Which statement is correct?


- A Carbon oxidises zinc oxide in method 1.
- **B** Zinc vapour is produced in both methods.
- **C** Zinc is produced at the anode in method 2.
- **D** Zinc compounds are reduced in both methods.
- 25 Which statement about the reactions of metals is correct?
 - **A** Iron and carbon dioxide are produced when iron(III) oxide is heated with carbon.
 - **B** Magnesium reacts with dilute hydrochloric acid producing hydrogen and chlorine.
 - **C** Potassium reacts vigorously with water producing hydrogen and an acidic solution.
 - **D** Zinc reacts with dilute sulfuric acid producing sulfur dioxide.

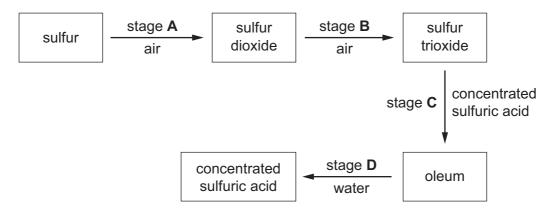
26 12.4g of copper(II) carbonate is heated in a test-tube. Only 50% is decomposed.

[M_r: CuCO₃, 124; CuO, 80]

What will be the final mass of the substances in the test-tube?

- **A** 9.4 g
- **B** 9.8 g
- **C** 10.2 g
- **D** 10.6 g
- 27 Which statement about the manufacture of ammonia is correct?
 - A Ammonia is manufactured by heating hydrogen and nitrogen at 50 °C and 1.0 atm.
 - **B** Ammonia is obtained by heating hydrogen and nitrogen in the Contact process.
 - **C** Hydrogen for the manufacture of ammonia is extracted from air.
 - **D** The reaction between hydrogen and nitrogen to form ammonia is reversible.
- 28 The diagram shows a stage in the purification of dirty water.

Which process does this apparatus show?


- A chlorination
- **B** condensation
- C distillation
- **D** filtration
- 29 Which substance in polluted air damages stonework and kills trees?
 - A carbon dioxide
 - B carbon monoxide
 - C lead compounds
 - **D** sulfur dioxide

30 Petrol-fuelled cars produce oxides of nitrogen.

Which statement explains how oxides of nitrogen are formed?

- **A** In the catalytic converter, the elements nitrogen and oxygen combine.
- **B** Oxygen and nitrogen compounds in petrol combine in the car engine.
- **C** The high temperatures in the engine provide oxygen and nitrogen with the activation energy needed to react.
- **D** In the car engine, nitrogen compounds in petrol combine with oxygen.
- **31** The scheme shows four stages in the conversion of sulfur to sulfuric acid.

In which stage is a catalyst used?

- 32 Which element has an oxide that is used as a food preservative?
 - A helium
 - **B** hydrogen
 - C iron
 - **D** sulfur
- 33 Which substance gives off carbon dioxide on heating?
 - A lime
 - **B** limestone
 - **C** limewater
 - **D** slaked lime

24	\A/biob	formula	represents	athyd	hutanaata	2
34	VVIIICII	iomiula	represents	euw	pulanoale	•

- A CH₃CH₂CH₂COOCH₂CH₃
- B CH₃COOCH₂CH₂CH₂CH₃
- C CH₃CH₂CH₂CH₂COOCH₂CH₃
- D CH₃CH₂COOCH₂CH₂CH₂CH₃
- **35** Methanol, CH₃OH, is a member of the homologous series of alcohols.

What is the formula of the alcohol in the same homologous series which contains three carbon atoms?

- A C_3H_5OH
- B C₃H₆OH
- \mathbf{C} C_3H_7OH
- D C₃H₈OH

36 Which type of compound reacts with hydrogen in an addition reaction?

- **A** alkanes
- **B** alkenes
- C alcohols
- D carboxylic acids
- 37 The equation for the reaction between methane and chlorine is shown.

$$CH_4 + 4Cl_2 \rightarrow CCl_4 + 4HCl$$

Which type of reaction does methane undergo?

- A substitution
- **B** reduction
- **C** condensation
- **D** addition

38 Which functional groups form an amide linkage?

- A H₂N- and -COOH
- **B** H_2N and H_2N
- C -OH and -COOH
- \mathbf{D} –OH and H_2N –

39 The structure of propene is shown.

Which diagram represents poly(propene)?

40 The equation shows the formation of a polymer called *Kevlar*.

$$n \text{ HOOC} \longrightarrow \text{COOH} + n \text{ H}_2\text{N} \longrightarrow \text{NH}_2$$

$$\downarrow -\text{H}_2\text{O}$$

$$\downarrow -\text{C} \longrightarrow \text{C} \longrightarrow \text{N} \longrightarrow \text{N} \longrightarrow \text{N}$$

Which row describes Kevlar?

	how the polymer is formed	type of polymer					
Α	addition polymerisation	polyamide					
В	addition polymerisation	polyester					
С	condensation polymerisation	polyamide					
D	condensation polymerisation	polyester					

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	III/	2 -	e L	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon			
	IIA				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ä	bromine 80	53	Н	iodine 127	85	Αŧ	astatine			
	I				8	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъ	moloud –	116	^	livermorium -
	>				7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209			
	>				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium
	III				2	В	boron 11	13	Ν	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
											30	Zu	zinc 65	48	р	cadmium 112	80	Нg	mercury 201	112	ပ်	copernicium
											29	Cn	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium -
Group											28	Z	nickel 59	46	Pd	palladium 106	78	宀	platinum 195	110	Ds	darmstadtium -
Gre											27	ဝိ	cobalt 59	45	R	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -
		-]	Г	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	SO	osmium 190	108	Hs	hassium
											25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium
					_	pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	Б	tantalum 181	105	Q O	dubnium –
						atc	<u> </u>				22	j	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿉	rutherfordium -
											21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ba	barium 137	88	Ra	radium -
	_				က	=	lithium 7	11	Na	sodium 23	19	×	potassium 39	37	Вb	rubidium 85	55	CS	caesium 133	87	Ŧ	francium

71 Lu lutetium 175	103 Lr
70 Yb ytterbium 173	NO nobelium
69 Tm thulium 169	Md mendelevium
68 Er erbium 167	100 Fm fermium
67 Ho holmium 165	BS einsteinium
66 Dy dysprosium 163	98 Cf californium
65 Tb terbium 159	97 BK berkelium
64 Gd gadolinium 157	96 Cm curium
63 Eu europium 152	95 Am americium
62 Sm samarium 150	94 Pu plutonium
Pm promethium	Np neptunium
60 Nd neodymium 144	92 U uranium 238
59 Pr praseodymium 141	Pa protactinium 231
58 Ce cerium 140	
57 La	89 AC actinium
lanthanoids	actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).