Cambridge IGCSE[™] | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | CHEMISTRY 0620/43 Paper 4 Theory (Extended) October/November 2022 1 hour 15 minutes You must answer on the question paper. No additional materials are needed. #### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do not use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. #### **INFORMATION** - The total mark for this paper is 80. - The number of marks for each question or part question is shown in brackets []. - The Periodic Table is printed in the question paper. - 1 Atoms and ions are made from small particles called electrons, neutrons and protons. - (a) Complete the table. | particle | relative charge | relative mass | |----------|-----------------|------------------| | electron | –1 | <u>1</u>
1840 | | neutron | | | | proton | | | [2] (b) Information about atoms and ions, A, B and C, is shown in the table. Complete the table. | atom or ion | number of electrons | number of neutrons | number of protons | symbol | |-------------|---------------------|--------------------|-------------------|--------------------------------| | Α | 18 | | 20 | ⁴² Ca ²⁺ | | В | | 18 | | ³⁵ C <i>l</i> | | С | 18 | 16 | 16 | | [6] [Total: 8] The table shows the melting points, boiling points and electrical conductivities of six substances, **D**, **E**, **F**, **G**, **H** and **I**. | substance | melting point
/°C | boiling point
/°C | conducts electricity
when solid | conducts electricity
when liquid | |-----------|----------------------|----------------------|------------------------------------|-------------------------------------| | D | 1083 | 2567 | yes | yes | | E | -117 | 79 | no | no | | F | 3550 | 4827 | no | no | | G | 119 | 445 | no | no | | Н | -210 | -196 | no | no | | I | 801 | 1413 | no | yes | | (a) | lde | ntify the substance, D , E , F , G , H or I , which is: | | |-----|-------|---|---------| | | (i) | a liquid at 25°C | [1] | | | (ii) | a gas at 25°C | [1] | | | (iii) | a solid consisting of simple molecules at 25 °C. | [1] | | (b) | | ntify the substance, D , E , F , G , H or I , which is a metal. Give a reason for your choice. | | | | | son | | | | IGa | 5011 | [2] | | (c) | | ntify the substance, \mathbf{D} , \mathbf{E} , \mathbf{F} , \mathbf{G} , \mathbf{H} or \mathbf{I} , which has a macromolecular structure. Give \mathbf{t} sons for your choice. | wo | | | sub | ostance | | | | rea | son 1 | | | | rea | son 2 |
[3] | | | | | | | (d) | lde | ntify the substance, D , E , F , G , H or I , which is an ionic solid. Give a reason for your choi | ice. | | | sub | ostance | | | | rea | son | | | | | |
[2] | 3 | Alumini | um is extracted from its ore by electrolysis. | |---------|---| | (a) Na | me the ore of aluminium which consists mainly of aluminium oxide[1] | | (b) Sta | ite what is meant by the term <i>electrolysis</i> . | | | [2] | | (c) Ele | ectrolysis is carried out on aluminium oxide dissolved in molten cryolite. | | nega | waste gases positive electrode aluminium oxide dissolved in molten cryolite aluminium Give two reasons why the electrolysis is carried out on aluminium oxide dissolved in molten cryolite instead of electrolysing molten aluminium oxide only. 1 | | (ii) | Write the ionic half-equation for the reaction occurring at the negative electrode. | | (iii) | The positive electrodes are made of carbon. Explain why the positive carbon electrodes are replaced regularly. | | | | | (d) | Alur | minium is more reactive than copper. | | |-----|-------|---|-----| | | Whe | en aluminium is added to aqueous copper(II) sulfate, no immediate reaction is seen. | | | | Ехр | lain why. | | | | | | [1] | | (e) | Alur | minium reacts with oxygen to form an amphoteric oxide. | | | | (i) | State what is meant by the term <i>amphoteric</i> . | | | | | | | | | | | [1] | | | (ii) | The reaction between aluminium oxide and aqueous sodium hydroxide forms a scontaining the negative ion AlO_2^- . The only other product is water. | alt | | | | Write a chemical equation for the reaction between aluminium oxide and aqueosodium hydroxide. | us | | | | | [2] | | (f) | Gall | lium is in the same group as aluminium and forms similar compounds. | | | | Pre | dict the formulae of: | | | | galli | ium(III) chloride | | | | galli | ium(III) sulfate. | | | | | | [2] | - 4 This question is about compounds of phosphorus. - (a) Gaseous phosphorus (V) chloride decomposes into gaseous phosphorus (III) chloride and gaseous chlorine. When the three gases are present in a closed container the system reaches equilibrium. $$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$ (i) Complete the table using only the words *increases*, *decreases* or *no change*. | | effect on the rate of the forward reaction | effect on the equilibrium yield (PC l_3 (g) and C l_2 (g)) | |----------------------------|--|--| | increasing the temperature | | increases | | decreasing the pressure | | | | adding a catalyst | | no change | [4] (ii) The table shows that when the temperature increases, the equilibrium yields of $PCl_3(g)$ and $Cl_2(g)$ increase. State what conclusion can be made from this. | • | - 4 | | |---|-----|----| | | 11 | il | | | , , | | (b) Complete the dot-and-cross diagram to show the electron arrangement in a molecule of phosphorus(III) chloride, PCl_3 . Show outer shell electrons only. [2] | | · | |-----|---| | (c) | Phosphorus oxychloride has the formula $POCl_3$. | | | Phosphorus oxychloride is the only product of the reaction between phosphorus(V) chloride, PCl_5 , and phosphorus(V) oxide, P_4O_{10} . | | | Write a chemical equation for the reaction between phosphorus (V) chloride and phosphorus (V) oxide. | | | [2] | | (d) | Compound X has the following composition by mass. | | | H, 3.66%; P, 37.80%; O, 58.54% | | | Calculate the empirical formula of compound X . | | | | | | | | | empirical formula = [2] | | (e) | Compound Y has the empirical formula H_3PO_4 and a relative molecular mass of 98. | | | Deduce the molecular formula of compound Y . | | | | | | | | | molecular formula =[1] | | | [Total: 12] | | | | ## **BLANK PAGE** 5 | This qu | uestion | is about sulfuric acid, H_2SO_4 , and salts that can be made from sulfuric acid. | | |---------|-----------|---|------| | (a) Su | ılfuric a | acid is manufactured by the Contact process. | | | sta | age 1 | Molten sulfur burns in air to produce sulfur dioxide. | | | sta | age 2 | Sulfur dioxide reacts with oxygen to form sulfur trioxide, SO ₃ . | | | sta | age 3 | Sulfur trioxide reacts with concentrated sulfuric acid to form oleum, $\rm H_2S_2O_7$. | | | sta | age 4 | Oleum is converted into sulfuric acid. | | | (i) | The | equation for the reaction in stage 2 is shown. | | | | | $2SO_2 + O_2 \rightleftharpoons 2SO_3$ | | | | State | e the temperature and pressure used in stage 2 . | | | | Nam | e the catalyst used in stage 2 . | | | | temp | perature | °C | | | pres | sure a | ıtm | | | catal | yst | | | (ii) | Write | e the chemical equation for the reaction in stage 3 . | [3] | | | | | [1] | | (iii) | Nam | e the substance that reacts with oleum in stage 4 . | | | | | | [1] | | | ame th | e black solid that is produced when concentrated sulfuric acid is added to sug | ∣ar, | | | | | [1] | (c) Dilute sulfuric acid and aqueous potassium hydroxide are used to make aqueous potassium sulfate. $$H_2SO_4 + 2KOH \rightarrow K_2SO_4 + 2H_2O$$ The method includes use of the following apparatus. (i) Calculate the volume of $0.0625\,\mathrm{mol/dm^3}$ dilute sulfuric acid, $\mathrm{H_2SO_4}$, that completely reacts with $25.0\,\mathrm{cm^3}$ of $0.100\,\mathrm{mol/dm^3}$ potassium hydroxide, KOH, to produce aqueous potassium sulfate. Use the following steps. • Calculate the number of moles of KOH in 25.0 cm³ of 0.100 mol/dm³ KOH. = mol Deduce the number of moles of H₂SO₄ that react with KOH. = mol | • | Calculate the volume of H ₂ SO ₄ required. | |---|--| | | | | | | volume =cm ³ [3] | |-----|-------|---| | | (ii) | The experiment is repeated using the same volume and concentration of potassium hydroxide and the same concentration of dilute sulfuric acid. In this second experiment, the product is aqueous potassium hydrogensulfate, $KHSO_4$. | | | | $H_2SO_4 + KOH \rightarrow KHSO_4 + H_2O$ | | | | Use your answer to (c)(i) and the equation to deduce the volume of H ₂ SO ₄ required. | | | | | | | | volume = cm ³ [1] | | (d) | | ueous potassium hydrogensulfate, KHSO $_4$ (aq), contains the ions K $^+$ (aq), H $^+$ (aq) and $_4^{2^-}$ (aq). | | | Des | scribe the observations in the following tests. | | | (i) | A flame test is carried out on aqueous potassium hydrogensulfate. | | | | [1] | | | (ii) | Solid copper(II) carbonate is added to aqueous potassium hydrogensulfate. | | | | [2] | | | (iii) | An acidic solution containing aqueous barium ions, $Ba^{2+}(aq)$, is added to aqueous potassium hydrogensulfate. | | | | [1] | | , , | 147 | | | (e) | | te the ionic equation for the reaction in (d)(iii). | | | Incl | ude state symbols. | | | | [3] | | | | [Total: 17] | 6 (a) Chloroethene ($CH_2=CHCl$) can be manufactured from 1,2-dichloroethane (CH_2ClCH_2Cl). The equation can be represented as shown. (i) Some bond energies are given. | bond | bond energy
in kJ/mol | |------|--------------------------| | C–C | 350 | | C=C | 610 | | C-C1 | 340 | | C–H | 410 | | H–C1 | 430 | Use the bond energies in the table to calculate the energy change, in kJ/mol, of the reaction. Use the following steps. Calculate the energy needed to break bonds. • Calculate the energy released when bonds form. | Calculate the energy change of the i | e reaction. | |--|-------------| |--|-------------| | | | energy change of the reaction = kJ/mo | |-----|------|---| | | (ii) | Deduce whether the energy change for this reaction is exothermic or endothermic. | | | | Give a reason for your answer. | | | | | | (b) | Par | t of a synthetic polymer is shown. | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | (i) | State the number of monomer units that are needed to make the part of the polymer shown. | | | | [1] | | | (ii) | Name and draw the structure of the monomer used to make this polymer. Show all of the atoms and all of the bonds. | | | | name | | | | structure | | | | | | | | | (iii) State the empirical formula of the polymer. [3] | (C) | PIO | oteins are natural polymers. | | |-----|-------|--|---------| | | | oteins are broken down into amino acids. The process is similar to how comp
bohydrates are broken down to give simple sugars. | lex | | | (i) | Name the type of reaction in which proteins are broken down into amino acids. | | | | | | [1] | | | (ii) | Name two types of substance that are used to break down proteins into amino acids. | | | | | 1 | | | | | 2 | [2] | | | (iii) | Amino acids are colourless. | | | | | A sample containing a mixture of amino acids is separated. Each amino acid is detected and identified. | ted | | | | Name the process used to separate the amino acids. | | | | | Name the type of substance used to detect the amino acids. | | | | | Give the symbol of the value used to determine the identity of each amino acid at separation and detection. | fter | | | | | [3] | | 'A) | Dro | oteins are natural polymers. Proteins contain amide linkages. | | | uj | | | | | | | nthetic polyamides also contain amide linkages. | | | | (i) | Name a synthetic polyamide. | | | | | | [1] | | | (ii) | Identify the two functional groups present in the monomers used to produce synthe polyamides. | ∍tic | | | | 1 | | | | | 2 |
[2] | | | | | [4] | [Total: 18] ### **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge. The Periodic Table of Elements | 110.7 | | ۵
۲ | helium 4 | 10 | Ne | neon
20 | 18 | Ā | argon
40 | 36 | 궃 | krypton
84 | 54 | Xe | xenon
131 | 98 | 格 | radon | | | | |-------|-----------|--------|---------------|---------------|--------------|------------------------------|----|----|------------------|----|----|-----------------|----|--------|------------------|-------|-------------|-----------------|--------|-----------|--------------------| | 18.7 | = | | | 6 | Щ | fluorine
19 | 17 | Cl | chlorine
35.5 | 35 | ğ | bromine
80 | 53 | П | iodine
127 | 85 | ¥ | astatine
- | | | | | 3 | > | | | 00 | 0 | oxygen
16 | 16 | S | sulfur
32 | 34 | Se | selenium
79 | 52 | Тe | tellurium
128 | 84 | Ъ | molonium
– | 116 | | livermorium
- | | ; | > | | | 7 | z | nitrogen
14 | 15 | ۵ | phosphorus
31 | 33 | As | arsenic
75 | 51 | Sb | antimony
122 | 83 | <u>B</u> | bismuth
209 | | | | | 2 | ≥ | | | 9 | ပ | carbon
12 | 14 | S | silicon
28 | 32 | Ge | germanium
73 | 20 | Sn | tin
119 | 82 | Pb | lead
207 | 114 | Εl | flerovium
- | | = | = | | | 2 | В | boron
11 | 13 | Ρl | aluminium
27 | 31 | Ga | gallium
70 | 49 | In | indium
115 | 81 | 11 | thallium
204 | | | | | | | | | | | | | | | 30 | Zu | zinc
65 | 48 | р
С | cadmium
112 | 80 | Нg | mercury
201 | 112 | S | copernicium
- | | | | | | | | | | | | 59 | Cn | copper
64 | 47 | Ag | silver
108 | 62 | Au | gold
197 | 111 | Rg | roentgenium
- | | eroup | | | | | | | | | | 28 | Ż | nickel
59 | 46 | Pd | palladium
106 | 78 | చ | platinum
195 | 110 | Ds | darmstadtium
- | | 5 | | | | 7 | | | | | | 27 | ပိ | cobalt
59 | 45 | 格 | rhodium
103 | 77 | ı | iridium
192 | 109 | Ĭ | meitnerium
- | | | | - I | hydrogen
1 | | | | | | | 26 | Fe | iron
56 | 44 | Ru | ruthenium
101 | 92 | Os | osmium
190 | 108 | Hs | hassium | | | | | | | | | 1 | | | 25 | Mn | manganese
55 | 43 | ည | technetium
- | 75 | Re | rhenium
186 | 107 | Bh | bohrium | | | | | | _ | loq | ass | | | | 24 | ပ် | chromium
52 | 42 | Mo | molybdenum
96 | 74 | ≥ | tungsten
184 | 106 | Sg | seaborgium
- | | | | | Key | atomic number | atomic symbo | name
relative atomic mass | | | | 23 | > | vanadium
51 | 41 | g | niobium
93 | 73 | <u>a</u> | tantalum
181 | 105 | В | | | | | | | | atc | len
 | | | | 22 | j | titanium
48 | 40 | Zr | zirconium
91 | 72 | 茔 | hafnium
178 | 104 | ¥ | rutherfordium
- | | | | | | | | | | | | 21 | Sc | scandium
45 | 39 | > | yttrium
89 | 57-71 | lanthanoids | | 89–103 | actinoids | | | : | = | | | 4 | Be | beryllium
9 | 12 | Mg | magnesium
24 | 20 | Ca | calcium
40 | 38 | ഗ് | strontium
88 | 56 | Ba | barium
137 | 88 | Ra | radium | | | _ | | | က | = | lithium
7 | 1 | Na | sodium
23 | 19 | × | potassium
39 | 37 | В | rubidium
85 | 22 | S | caesium
133 | 87 | ᇁ | francium
- | | 71 | Γn | lutetium | 175 | 103 | ۲ | lawrencium | I | |----|----|--------------|-----|-----|-----------|--------------|-----| | 70 | Υp | ytterbium | 173 | 102 | % | nobelium | ı | | 69 | Tm | thulium | 169 | 101 | Md | mendelevium | 1 | | 89 | Щ | erbinm | 167 | 100 | Fm | ferminm | I | | 29 | 웃 | holmium | 165 | 66 | Es | einsteinium | ı | | 99 | ۵ | dysprosium | 163 | 86 | ర్ | californium | ı | | 9 | Tp | terbium | 159 | 26 | 崙 | berkelium | ı | | 64 | В | gadolinium | 157 | 96 | Cm | curium | ı | | 63 | En | europium | 152 | 92 | Am | americium | ı | | 62 | Sm | samarium | 150 | 94 | Pn | plutonium | ı | | 61 | Pm | promethium | I | 93 | ď | neptunium | I | | 09 | pN | neodymium | 144 | 92 | \supset | uranium | 238 | | 59 | Ā | praseodymium | 141 | 91 | Ра | protactinium | 231 | | 28 | Ce | cerium | 140 | 06 | H | thorium | 232 | | 22 | Га | lanthanum | 139 | 88 | Ac | actinium | 1 | lanthanoids actinoids The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).