Cambridge IGCSE[™] | CANDIDATE
NAME | | | | | |-------------------|--|---------------------|--|--| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | CHEMISTRY 0620/32 Paper 3 Theory (Core) October/November 2023 1 hour 15 minutes You must answer on the question paper. No additional materials are needed. #### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do **not** use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. #### **INFORMATION** - The total mark for this paper is 80. - The number of marks for each question or part question is shown in brackets []. - The Periodic Table is printed in the question paper. **1** A list of compounds is shown. ammonia carbon dioxide carbon monoxide cobalt(II) chloride ethane ethene glucose methane potassium sulfate sodium phosphate sulfur dioxide Answer the following questions using only the compounds from the list. Each compound may be used once, more than once or not at all. Give the name of the compound that: | (a) | is an unsaturated hydrocarbon | | |-----|---|-----| | | | [1] | | (b) | leads to the deoxygenation of water in rivers | | | | | [1] | | (c) | is a gas which turns damp red litmus paper blue | | | | | [1] | | (d) | is the main constituent of natural gas | | | | | [1] | | (e) | is a product of photosynthesis | | | | | [1] | | (f) | is a compound of a transition element. | | | | | [1] | [Total: 6] - **2** Petroleum is a mixture of hydrocarbons. - (a) Describe two characteristics of a mixture. | 1 |
 | |---|------| | | | | | | | 2 |
 | | |
 | | | [2] | **(b)** Fig. 2.1 shows a fractionating column for separating petroleum into different hydrocarbon fractions. Fig. 2.1 - (i) On Fig. 2.1, draw an **X** inside the column to show where the hydrocarbon with the lowest volatility collects. [1] - (ii) Name the fraction labelled A in Fig. 2.1. | [4] | |---------| | - 1 1 1 | | F . 1 | - (iii) State the name of the fraction which has hydrocarbons with the longest chain length. -[1] - (iv) State one use of the fuel oil fraction. [Total: 6] 3 (a) Table 3.1 shows the average concentrations, in ng/1000 cm³, of air pollutants in four different years. Table 3.1 | | concentration of air pollutant in ng/1000 cm ³ | | | | | | | |------|---|--------------|--------------------|--------------|----------------|--|--| | year | carbon
monoxide | hydrocarbons | oxides of nitrogen | particulates | sulfur dioxide | | | | 2019 | 2.5 | 12.0 | 19.6 | 28.0 | 30.0 | | | | 2020 | 2.0 | 13.5 | 21.8 | 30.1 | 21.7 | | | | 2021 | 1.8 | 14.8 | 18.5 | 27.5 | 23.8 | | | | 2022 | 1.6 | 16.0 | 22.7 | 26.2 | 25.0 | | | | (i) | Name the oxide pollutant that has the highest concentration in 2021. | |---------|---| | | [1] | | (ii) | Name the pollutant that shows a continuous decrease in concentration from 2019 to 2022. | | | [1] | | (iii) | Calculate the average mass, in ng, of particulates in a 250 cm³ sample of polluted air in 2019. | | | | | | | | | | | | mass = ng [1] | | | 11100 | | (b) (i) | State one adverse effect of particulates on health. | | | [1] | | (ii) | Particulates are formed by the incomplete combustion of hydrocarbons. | | | State the meaning of the term incomplete combustion. | | | | | | [1] | | (c) (i) | (i) Oxides of nitrogen contribute to acid rain. | | | | | | | | |-----------------|---|-----------------|-------------------|---------------|---------------------|------------------|--|--| | | Choose from the list the pH value for an acidic solution. | | | | | | | | | | Draw a circle around your chosen answer. | | | | | | | | | | pl | 15 pH | 7 pH9 | pF | 113 | [1] | | | | (ii) | Complete the sentence two words from the | | emoving oxide | s of nitroge | n from car exhau | ısts by choosing | | | | | age | nt cata | lytic com | pound | converter | | | | | | distilla | ntion filt | er oxi | dising | pump | | | | | | The emission of o | xides of nitro | gen from car e | xhausts is r | educed by using | а | | | | | | | | | | [1] | | | | (iii) | Oxides of nitroger | can be form | ed by the actio | n of bacter | ia on nitrates. | | | | | | Name the aqueou | s solution and | the metal use | ed in the tes | st for nitrate ions | | | | | | aqueous solution | | | | | | | | | | metal | | | | | | | | | | | | | | | [2] | | | | (d) Nit | rogen dioxide deco | mposes when | heated. Nitric | oxide and | oxygen are prod | uced. | | | | (i) | Complete the sym | bol equation | for this reactio | n. | | | | | | | | NO ₂ | ⇌ 2NO + . | | | [2] | | | | (ii) | State the meaning | of the symbo | ol ← . | | | | | | | | | | | | | [1] | | | | | | | | | | [Total: 12] | | | | | | | | | | | | | 4 | Tin | is a solid at room temperature. | |-----|---| | (a) | State two general properties of a solid. | | | 1 | | | | | | 2 | | | | | | [2] | | (b) | Fig. 4.1 shows the physical states of tin. | | | solid tin gas | | | Fig. 4.1 | | | Name the changes of physical states A and B . | | | A | | | В | | | [2] | | (c) | Describe solid and liquid tin in terms of the separation and motion of the particles. | | (-) | solid tin | | | separation | | | | | | motion | | | motion | | | liquid tip | | | liquid tin | | | separation | | | | | | motion | [4] (d) A sealed gas syringe contains $80\,\mathrm{cm^3}$ of carbon dioxide gas. | now decreasing the temperature affects the volume of carbon dioxide gas in the gas when the pressure remains constant. | | |--|--| | [1] | | | [Total: 9] | | - **5** This question is about metals. - (a) Table 5.1 shows some properties of some Group I metals. Table 5.1 | metal | melting point in °C | boiling point in °C | atomic volume
in cm³/mol | observations on reaction with water | |-----------|---------------------|---------------------|-----------------------------|--------------------------------------| | lithium | 181 | 1342 | 12.9 | | | sodium | 98 | | 23.7 | bubbles form rapidly
but no flame | | potassium | 63 | 760 | 45.4 | bubbles form rapidly and flame seen | | rubidium | 39 | 686 | | explodes | Use the information in Table 5.1 to predict: | | (i) | the boiling point of sodium | 1] | |-----|-------|---|--------| | | (ii) | the atomic volume of rubidium | 1] | | (| (iii) | the observations when lithium reacts with water | | | | | [| 1] | | (| iv) | the physical state of lithium at 1300 °C. Give a reason for your answer. | | | | | physical state | | | | | reason | | | | | [: |
2] | | (b) | Iron | is extracted in a blast furnace by reduction of iron(III) oxide, Fe_2O_3 , with carbon monoxide | e. | | | | $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ | | | | (i) | Explain how this equation shows that iron(III) oxide is reduced. | | | | | | | | (ii) | Choose the phrase which describes the meaning of (III) in iron(III) oxide. | | |------------|---|--------------| | | Tick (✓) one box. | | | | the number of oxygen atoms in iron(III) oxide | | | | the oxidation number of iron in iron(III) oxide | | | | the number of CO molecules which react with iron(III) oxide | | | | the number of electrons in one atom of iron | [1] | | (iii) | Calcium carbonate is added to the blast furnace. | | | | The calcium carbonate undergoes thermal decomposition. | | | | Complete the word equation for the thermal decomposition of calcium carbonate. | | | | calcium carbonate → + | | | | | [2] | | (c) Sta | inless steel is an alloy. | | | (i) | Choose the diagram, A , B , C or D , in Fig. 5.1 that best shows the structure of an alloy. | | | | A B C D | | | | | | | | Fig. 5.1 | [41] | | /** | diagram | [1] | | (ii) | Give one reason for using stainless steel instead of pure iron for cutlery. | . | | | | [1] | (d) Table 5.2 gives the observations when four different metals react with dilute hydrochloric acid. Table 5.2 | metal | observations | |-----------|---------------------------| | iron | bubbles form slowly | | mercury | no bubbles seen | | strontium | bubbles form very quickly | | tin | bubbles form very slowly | Put the four metals in order of their reactivity. Put the least reactive metal first. | least reactive — | | - | most reactive | |------------------|--|---|---------------| | | | | | [2] [Total: 13] - A student investigates the reaction of large pieces of magnesium with dilute hydrochloric acid at 20 °C. The magnesium is in excess. - (a) Fig. 6.1 shows the volume of hydrogen gas released as the reaction proceeds. Fig. 6.1 (i) Deduce the volume of hydrogen gas released after 30 seconds. volume of hydrogen = cm³ [1] (ii) The student repeats the experiment using smaller pieces of magnesium. The mass of magnesium used remains the same. The magnesium is still in excess. All other conditions stay the same. Draw a line on the grid in Fig. 6.1 to show the volume of hydrogen gas released when smaller pieces of magnesium are used. [2] | (b) | (i) | The student repe | eats the experiment at | a higher temperatu | re of 35°C. | | |-----|-------|-----------------------|---------------------------|---------------------|-----------------------------|--------| | | | All other condition | ons stay the same. | | | | | | | Describe how th | e rate of reaction differ | s when a temperate | ure of 35°C is used. | | | | | | | | | [1] | | | (ii) | The student repe | eats the experiment us | ing a lower concen | tration of acid. | | | | | All other condition | ons stay the same. | | | | | | | Describe how th | e rate of reaction differ | s when a lower cor | centration of acid is used. | | | | | | | | | [1] | | | | | | | | | | (c) | Нус | drochloric acid rea | acts with lithium hydrox | ride. | | | | | (i) | Complete the wo | ord equation for this re | action. | | | | | hy | vdrochloric
acid + | lithium
hydroxide | | + | [0] | | | (!!\ | | . I:-4 4b 4b - 4 b 4 | | 4: | [2] | | | (ii) | | e list the word that best | | ction. | | | | | Draw a circle ard | ound your chosen ansv | ver. | | | | | | addition | decomposition | neutralisation | oxidation | [1] | | | (iii) | State the colour | of a solution of thymol | phthalein dissolved | in aqueous sodium hydrox | xide. | | | | | | | | [1] | | | | | | | [Tot | al: 9] | | | | | | | | | **7** (a) Fig. 7.1 shows the displayed formula of fumaric acid. Fig. 7.1 | (i) | On Fig. 7.1, draw a circle around one carboxylic acid functional group. | [1] | |-------|--|-----| | (ii) | Deduce the molecular formula of fumaric acid. | | | | | [1] | | (iii) | Fumaric acid is a colourless compound. | | | | Describe the colour change when excess fumaric acid is added to aqueous bromine. | | | | from to | [2] | (b) Fumaric acid can be oxidised to produce a compound with the molecular formula $C_4H_6O_6$. Complete Table 7.1 to calculate the relative molecular mass of $C_4H_6O_6$. Table 7.1 | atom | number
of atoms | relative
atomic mass | | |----------|--------------------|-------------------------|-------------| | carbon | 4 | 12 | 4 × 12 = 48 | | hydrogen | | 1 | | | oxygen | | 16 | | relative molecular mass =[2] Complete the word equation for the reaction of ethanoic acid with sodium carbonate. | ethanoic
acid | + | sodium
carbonate | \rightarrow | | + | | + | | | |------------------|-------|---------------------|---------------|---------------------|--------|---------|---|----|---| [3 |] | | (d) Etha | anoic | acid can be p | roduc | ed by the oxidation | n of e | thanol. | | | | | () | | | | , | | | | | | | (i) | State | one use of e | thano | ol. | | | | | | (ii) Ethanol, C₂H₅OH, is an alcohol. Choose from the list the general formula for the alcohol homologous series. Draw a circle around your chosen answer. $$C_nH_nOH$$ $C_nH_{2n+1}OH$ $C_nH_{2n+2}OH$ $C_{2n}H_{2n}OH$ [1][1] (iii) Ethanol can be manufactured by the addition of steam to ethene. State two conditions for this reaction. | 1 | | |---|----| | 2 | | | | [2 | [Total: 13] | 8 | Zind | c chloride is an ionic compound. | | |---|------|--|-----| | | (a) | lonic compounds are good electrical conductors when molten or in aqueous solution. | | | | | Describe one other physical property of ionic compounds. | | | | | | [1] | | | (b) | Complete Fig. 8.1 to show: | | - the electronic configuration of a chloride ion - the charge on the ion. Fig. 8.1 [2] (c) (i) Deduce the number of protons and neutrons in the zinc ion shown. $$^{67}_{30}$$ Zn²⁺ (ii) Complete this sentence about positive ions. Positive ions are known as[1] | (d) | Mol | Iten zinc chloride is electrolysed using graphite electrodes. | |-----|------------|--| | | | te the names of the products at each electrode and give the observations at the positive ctrode. | | | pro | duct at the negative electrode | | | pro | duct at the positive electrode | | | obs | servations at the positive electrode | | | | [3] | | | | | | (e) | Gra | aphite electrodes conduct electricity. | | | (i) | State one other property that the electrode should have. | | | | [1] | | | (ii) | Choose the correct statement about the structure and bonding in graphite. | | | | Tick (✓) one box. | | | | simple ionic | | | | simple covalent | | | | giant ionic | | | | giant covalent | | | , . | [1] | | (| (iii) | State one use of graphite other than as an electrode. | | | | [1] | | | | [Total: 12] | ## **BLANK PAGE** ## **BLANK PAGE** ### **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge. The Periodic Table of Elements | ₹ | F 2 | helium
4 | 10 | Ne | neon
20 | 18 | Ar | argon
40 | 36 | 궃 | krypton
84 | 54 | Xe | xenon
131 | 98 | R | radon | 118 | Og | oganesson
- | |-------|-----|---------------|---------------|--------------|------------------------------|----|----|------------------|----|----|-----------------|----|----------|------------------|-------|-------------|-----------------|--------|-----------|--------------------| | ₹ | | | 6 | ш | fluorine
19 | 17 | Cl | chlorine
35.5 | 35 | Ŗ | bromine
80 | 53 | Н | iodine
127 | 85 | ¥ | astatine
- | 117 | <u>S</u> | tennessine
- | | > | | | 8 | 0 | oxygen
16 | 16 | ഗ | sulfur
32 | 34 | Se | selenium
79 | 52 | <u>a</u> | tellurium
128 | 84 | Ъ | moloud – | 116 | _ | livermorium
– | | > | | | 7 | Z | nitrogen
14 | 15 | ₾ | phosphorus
31 | 33 | As | arsenic
75 | 51 | Sb | antimony
122 | 83 | <u>B</u> | bismuth
209 | 115 | Mc | moscovium
- | | ≥ | | | 9 | ပ | carbon
12 | 14 | S | silicon
28 | 32 | Ge | germanium
73 | 20 | Sn | tin
119 | 82 | Pb | lead
207 | 114 | ŀΙ | flerovium
- | | ≡ | | | 5 | М | boron
11 | 13 | Αl | aluminium
27 | 31 | Ga | gallium
70 | 49 | In | indium
115 | 81 | 11 | thallium
204 | 113 | R | mihonium
– | | | | | | | | • | | | 30 | Zu | zinc
65 | 48 | g | cadmium
112 | 80 | Hg | mercury
201 | 112 | ű | copernicium
- | | | | | | | | | | | 29 | Cn | copper
64 | 47 | Ag | silver
108 | 62 | Αn | gold
197 | 111 | Rg | roentgenium
- | | dnoib | | | | | | | | | 28 | z | nickel
59 | 46 | Pd | palladium
106 | 78 | ₹ | platinum
195 | 110 | Ds | darmstadtium
- | | 5 | | | | | | | | | 27 | ဝိ | cobalt
59 | 45 | 格 | rhodium
103 | 77 | 'n | iridium
192 | 109 | Ħ | meitnerium
- | | | - I | hydrogen
1 | | | | | | | | | iron
56 | | Ru | ruthenium
101 | 9/ | Os | osmium
190 | 108 | Hs | hassium
- | | | | | | | | | | | 25 | Mn | manganese
55 | 43 | ပ | technetium
- | 75 | Re | rhenium
186 | 107 | Bh | bohrium
– | | | | | | pol | ass | | | | | | chromium
52 | | Mo | molybdenum
96 | 74 | ≯ | tungsten
184 | 106 | Sg | seaborgium
- | | | | Key | atomic number | atomic symbo | name
relative atomic mass | | | | 23 | > | vanadium
51 | 41 | g | niobium
93 | 73 | Б | tantalum
181 | 105 | g
O | dubnium
- | | | | | | ato | rela | | | | 22 | j | titanium
48 | 40 | Zr | zirconium
91 | 72 | Έ | hafnium
178 | 104 | Ÿ | rutherfordium
- | | | | | | | | | | | 21 | Sc | scandium
45 | 39 | > | yttrium
89 | 57–71 | lanthanoids | | 89–103 | actinoids | | | = | | | 4 | Be | beryllium
9 | 12 | Mg | magnesium
24 | 20 | Ca | calcium
40 | 38 | ഗ് | strontium
88 | 56 | Ba | barium
137 | 88 | Ra | radium
- | | _ | | | 3 | := | lithium
7 | 7 | Na | sodium
23 | 19 | ¥ | potassium
39 | 37 | В | rubidium
85 | 55 | S | caesium
133 | 87 | ቷ | francium
- | | 71
Lu | lutetium
175 | 103 | ۲ | lawrencium | ı | |-----------------|---------------------|-----|-----------|--------------|-----| | 70
Yb | ytterbium
173 | 102 | 9 | nobelium | ı | | ee
Tm | thulium
169 | 101 | Md | mendelevium | I | | 88
Fr | erbium
167 | 100 | Fm | ferminm | ı | | 67
Ho | holmium
165 | 66 | Es | einsteinium | ı | | °°
Dy | dysprosium
163 | 86 | ŭ | californium | ı | | e5
Tb | terbium
159 | 97 | BK | berkelium | ı | | Gd
Gd | gadolinium
157 | 96 | Cm | curium | ı | | e3
Eu | europium
152 | 92 | Am | americium | ı | | 62
Sm | samarium
150 | 94 | Pn | plutonium | ı | | e1
Pm | promethium
- | 93 | ď | neptunium | ı | | 9
9
8 | neodymium
144 | 92 | \supset | uranium | 238 | | 59
Pr | praseodymium
141 | 91 | Ра | protactinium | 231 | | S8
Ce | cerium
140 | 06 | 드 | thorium | 232 | | 57
La | lanthanum
139 | 89 | Ac | actinium | ı | lanthanoids actinoids The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).