

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY

0620/31

Paper 3 Theory (Core)

May/June 2024

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 Fig. 1.1 shows the structures of seven substances, A, B, C, D, E, F and G.

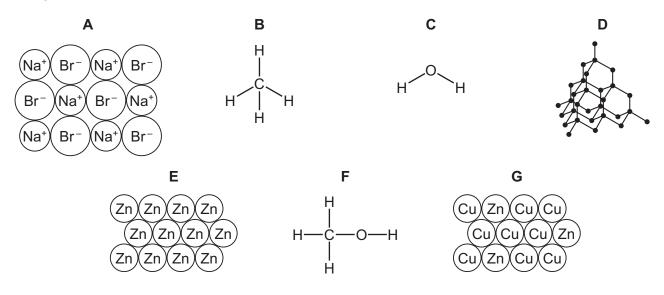


Fig. 1.1

(a) Answer the following questions using only the structures in Fig. 1.1. Each structure may be used once, more than once or not at all.

State which structure represents:

(1)	an alloy	
		[1]
(ii)	a substance that only conducts electricity when molten or in aqueous solution	
		[1]
(iii)	a giant covalent structure	
		[1]
(iv)	a compound that is a product formed in a hydrogen-oxygen fuel cell	
		[1]
(v)	a compound with a high melting point	
		[1]
(vi)	a gas that is responsible for increased global warming.	
		[1]

(b) Complete Fig. 1.2 to show the dot-and-cross diagram for structure **C**. Show the outer shell electrons only.

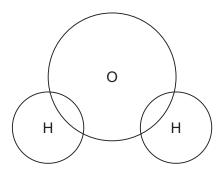


Fig. 1.2

[2]

[Total: 8]

2 (a) Table 2.1 shows the percentages by mass of the elements present in the human body.

Table 2.1

element	percentage by mass of element
calcium	1.50
carbon	18.00
chlorine	0.15
hydrogen	10.00
magnesium	0.05
nitrogen	3.00
oxygen	65.00
phosphorus	1.00
potassium	0.35
sodium	0.15
sulfur	0.25
other elements	0.55

Answer these questions using information from Table 2.1.

	(i)	Name the non-metallic element in Table 2.1 that has the lowest percentage by mass.	
			[1]
	(ii)	Name an element in Table 2.1 that is in Period 4 of the Periodic Table.	
			[1]
(b)	Son	ne medicines contain a compound made of Mg²⁺ ions and OH⁻ ions.	
	Nar	me the compound made of Mg²⁺ ions and OH⁻ ions.	
			[1]
(c)		scribe the observations when aqueous sodium hydroxide is added dropwise to a soluti taining calcium ions until the sodium hydroxide is in excess.	on
	obs	ervations with dropwise addition of sodium hydroxide	
	obs	ervations with excess sodium hydroxide	
			 [2]

(d)	Name a cal	cium salt that i	s soluble in water.		
					[1]
(e)	Table 2.2 sh	nows some pro	pperties of the Grou	up I metals.	
			Table 2	2.2	
		metal	melting point	observations on reaction with water	

metal	melting point /°C	observations on reaction with water
lithium	181	
sodium	98	bubbles form rapidly but no flame
potassium		bubbles form very rapidly and flame
rubidium	39	explodes

	Use the information in Table 2.2 to predict:
	the melting point of potassium
	the observations when lithium reacts with water.
	[2]
(f)	State how the density of the Group I elements changes down the group. [1]
(g)	
	Complete the symbol equation for this reaction.
	Na + $2H_2O \rightarrow 2NaOH +$ [2]
	[Total: 11]

3	Alu	mini	um is extracted by electrolysis of its purified ore.
	(a)	Naı	me the main ore of aluminium.
	(b)	Fig	. 3.1 shows the apparatus used in the extraction of aluminium.
			+ power - supply steel case
			Fig. 3.1
		(i)	Label the cathode in Fig. 3.1. [1
		(ii)	The electrolyte contains molten aluminium oxide.
			State the product formed at each electrode.
			positive electrode
			negative electrode[2
			ر ا
	(c)	Sta	te two physical properties that explain why aluminium is used in overhead electrical cables
		1	
		2	[2
	(d)		minium ore is purified by reacting it with sodium hydroxide. dium hydroxide is an alkali.
		(i)	State the meaning of the term alkali.
			[1
		(ii)	Describe how to find the pH of a dilute solution of sodium hydroxide using universal indicator paper.

(iii)	A dilute solution of sodium hydroxide is added the sodium hydroxide is in excess.	I to a solution of methyl orange in acid until
	State the colour change of the methyl orange.	
	from to	[2]
		[Total: 11]

4 (a) Fig. 4.1 shows the displayed formula of a compound extracted from a plant.

Fig. 4.1

On Fig. 4.1, draw a circle around **one** functional group that makes this compound unsaturated. [1]

(b) A student extracts mixtures of coloured compounds from four different plants, **Q**, **R**, **S** and **T**. Fig. 4.2 shows the results of chromatography of these mixtures using an organic solvent.

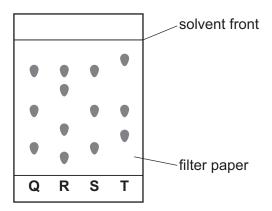


Fig. 4.2

(1)	Deduce which plant, Q , R , S or T , contains the greatest number of coloured compounds.
	[1
(ii)	Deduce which two plants, Q , R , S or T , contain exactly the same coloured compounds.
	and[1
(iii)	State the meaning of the term solvent.
	[1]

(c) (i) Plants produce glucose and oxygen by photosynthesis.

	+		\rightarrow	glucose	+	oxygen	
				-			
							[
ii) Name one	other	substance that is	esser	ntial for photosynth	nesis.		
							[

5	(a)	An	atom	of	carbon	is	re	presented	by	the	symbol	shown.
---	-----	----	------	----	--------	----	----	-----------	----	-----	--------	--------

¹⁴₆C

Describe this atom of carbon in terms of:

the position of the electrons, neutrons and protons in this atom
the number of neutrons and number of protons
the electronic configuration.

(b) (i) Complete the symbol equation for the incomplete combustion of carbon to produce carbon monoxide.

....C +
$$O_2 \rightarrow$$
CO [2]

[5]

(ii) State one adverse effect of carbon monoxide.

(c) Fig. 5.1 shows the displayed formula of chromium carbonyl.

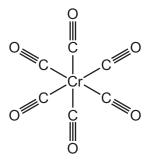


Fig. 5.1

Deduce the molecular formula of chromium carbonyl.

(d) Another compound of chromium has the formula $\mathrm{Na_2Cr_2C_{10}O_{10}}$.

Complete Table 5.1 to calculate the relative molecular mass of $\mathrm{Na_2Cr_2C_{10}O_{10}}$.

Table 5.1

type of atom	number of atoms	relative atomic mass	
sodium	2	23	2 × 23 = 46
chromium		52	
carbon		12	
oxygen		16	

relative	molecular	mass	=	 [2	1
IOIGHIVO	morodaiai	111400		 1-	Ш

(e) Chromium can be produced by heating chromium(III) oxide, ${\rm Cr_2O_3}$, with carbon.

$$Cr_2O_3 + 3C \rightarrow 2Cr + 3CO$$

Describe how this equation shows that chromium(III) oxide is reduced.	
	[1

[Total: 12]

- 6 Large pieces of solid sulfur burn in excess oxygen to produce sulfur dioxide gas.
 - (a) Complete the equation by adding the missing state symbol.

$$S(....) + O_2(g) \rightarrow SO_2(g)$$
 [1]

(b) Fig. 6.1 shows how the mass of sulfur changes as the reaction proceeds.

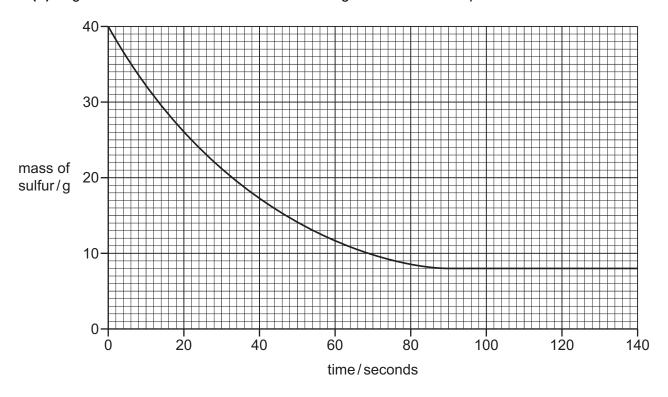


Fig. 6.1

Deduce the time taken for the reaction to finish.

.....[1]

(c) The experiment is repeated using powdered sulfur.

Describe the effect on the rate of reaction of using powdered sulfur rather than large pieces of sulfur.

[1]

(d)	Sulfur	dioxide	reacts	with	oxygen	in a	closed	container.
-----	--------	---------	--------	------	--------	------	--------	------------

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

		$200_2(g)$ · $0_2(g)$ · $200_3(g)$	
	(i)	Describe the effect, if any, each of the following has on the rate of this reaction.	
		All other conditions stay the same.	
		The temperature is decreased.	
		The pressure of the gases is increased.	
			[2]
	(ii)	Changing concentration changes the rate of a reaction.	
		Choose the correct unit of concentration from the list.	
		Draw a circle around your chosen answer.	
		dm³/mol mol/dm mol/dm² mol/dm³	[1]
(e)	Sul	lfur dioxide is an air pollutant.	
	(i)	State one adverse effect of sulfur dioxide.	
			[1]
	(ii)	Emissions of sulfur dioxide can be reduced by using low-sulfur fossil fuels.	
		State one other way of reducing sulfur dioxide emissions from fossil fuels.	
			[1]

(f) Aqueous sodium hydrogen sulfite releases sulfur dioxide gas at room temperature.

Sulfur dioxide changes the colour of acidified potassium manganate (VII) from purple to colourless.

Fig. 6.2 shows a sealed tube with a small volume of aqueous sodium hydrogen sulfite at the bottom. A piece of filter paper soaked in acidified potassium manganate (VII) is attached to the top of the tube.

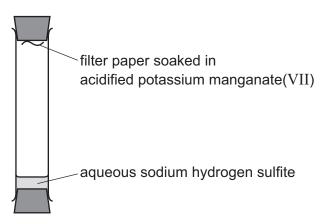


Fig. 6.2

The filter paper becomes colouriess after a short time.
Explain these results in terms of kinetic particle theory.
[3

[Total: 11]

© UCLES 2024 0620/31/M/J/24

The filter paper remains purple at first.

7

Iron is	a metal. Iron has a	high density, a h	nigh melting	g point and a	high boiling point.	
(a) Sta	ate three other phy	sical properties	of iron.			
1.						
2 .						
3 .						
						[3]
(b) (i)	State the conditio	ns needed for ir	on to rust.			
, , , ,						
						101
(ii)	Rust is hydrated i					[2]
(11)			or boois o	vido		
	State if iron(III) of Give a reason for		OI Dasic O	xide.		
						[1]
(iii)	Complete this ser	ntence about me	thods of p	reventing rus	ting.	
	Rusting can be pr	evented by pain	nting or			
						[1]
(c) Th	e list shows five me	tals.				
	calcium	copper	iron	silver	sodium	
	t these metals in or t the most reactive		•			
		most reactive				
		†				
		least reactive				

[2]

(d) Complete the word equation for the reaction of calcium carbonate with nitric acid.

[2]

[Total: 11]

8 (a) Fig. 8.1 shows the displayed formulae of five organic compounds, V, W, X, Y and Z.

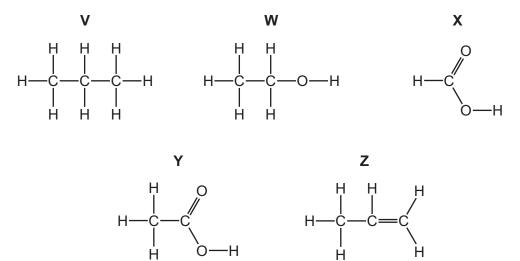


Fig. 8.1

	(i)	State which two of the compounds, V , W , X , Y and Z , are in the same homologous ser	ies.
	(ii)	Explain why compound V is an alkane.	
((iii)	State the name of the homologous series to which compound X belongs.	[2]
(b)	Eth	anol can be manufactured by the catalytic addition of steam to ethene.	[יי]
	(i)	State the temperature and pressure required for this reaction.	
		temperature°C	
		pressure atm	[2]
	(ii)	Name one other method of manufacturing ethanol.	
(c)	Des	scribe how alkenes are manufactured from petroleum fractions.	[1]

[Total: 9]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

								Gro	Group								
	=											≡	≥	>	5	=>	=
							- I										2 He
				Key			hydrogen 1										helium 4
	4		6	atomic number								2	9	7	80	6	10
	Be		atoı	atomic symbo	loc							В	ပ	z	0	ш	Ne
	beryllium 9		relat	name relative atomic mass	ISS							boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20
	12	•										13	14	15	16	17	18
	Mg											Ν	S	۵	ഗ	Cl	Ā
	magnesium 24											aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
1	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	Ca	Sc	F	>	ပ်	Mn	Fe	ပိ	Z	Cn	Zu	Ga	Ge	As	Se	ă	궃
	calcium 40	scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
1	38	39	40	14	42	43	44	45	46	47	48	49	50	51	52	53	54
	Š	>	Zr	qN	Mo	ပ	R	格	Pd	Ag	В	In	Sn	Sb	Те	П	Xe
	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium -	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
-	56	57-71	72	73	74	75	92	77	78	79	80	81	82	83	84	85	98
	Ва	lanthanoids	Ξ	<u>Б</u>	>	Re	SO	٦	చ	Αn	Нg	lΤ	Pb	Bi	Ъ	¥	R
	barium 137		hafnium 178	tantalum 181	tungsten 184	rhenium 186	osmium 190	iridium 192	platinum 195	gold 197	mercury 201	thallium 204	lead 207	bismuth 209	molouium –	astatine	radon
_	88	89–103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	Ra	actinoids	꿆	op O	Sg	Bh	Hs	Μ̈́	Ds		C	R	Fl	Mc	_	<u>⊳</u>	O
	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	0	copernicium	nihonium	flerovium	moscovium	livermorium	tennessine	oganesson
_	1		1	ı		ı	ı	-	-		ı	ı	ı	ı	I	ı	ı

71	Iutetium	175	103	Ļ	lawrencium	ı
0 5	ytterbium	173	102	8	nobelium	ı
69 F	thulium	169	101	Md	mendelevium	ı
68 П	erbium	167	100	Fm	fermium	ı
67	Polmium	165	66	Es	einsteinium	ı
99	dysprosium	163	86	ర	californium	ı
65 H	terbium	159	26	Ř	berkelium	ı
49 C	gadolinium	157	96	Cm	curium	ı
63	europium	152	92	Am	americium	ı
62	Samarium	150	94	Pu	plutonium	ı
61	promethium	I	93	ď	neptunium	ı
09	neodymium	144	92	\supset	uranium	238
59	r l praseodymium	141	91	Ра	protactinium	231
28	cerium C	140	06	Ļ	thorium	232
57	lanthanum	139	89	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).