

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/32

May/June 2024 Paper 3 Theory (Core)

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

2

1 Fig. 1.1 shows the structures of seven substances, A, B, C, D, E, F and G.

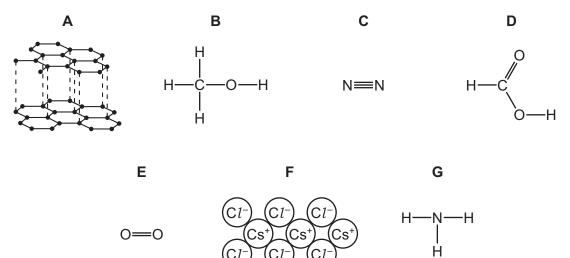


Fig. 1.1

(a) Answer the following questions using only the structures in Fig. 1.1. Each structure may be used once, more than once or not at all.

State which structure represents:

(i)	a gas that forms 78% by volume of clean, dry air	
		[1]
(ii)	a compound with a high melting point	
		[1]
(iii)	a giant covalent structure	
		[1]
(iv)	a compound in the same homologous series as ethanol	
		[1]
(v)		[41
(vi)	a non-metallic element that conducts electricity.	נין
(*')	a non-motalile diement that conducts clostroity.	[1]

* 0019656651503 *

(b) Complete Fig. 1.2 to show the dot-and-cross diagram for structure **G**. Show the outer electron shells only.

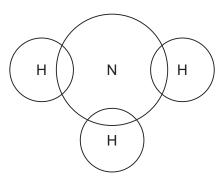


Fig. 1.2

[2]

[Total: 8]

2 (a) Blood plasma is the liquid part of blood.

Table 2.1 shows the mass, in mg, of some ions present in 100 cm³ of blood plasma.

Table 2.1

name of ion	formula of ion	mass of ion in 100 cm ³ of blood plasma/mg	
calcium	Ca ²⁺	10.0	
chloride	C1-	365.6	
hydrogencarbonate	HCO ₃ -	164.7	
hydrogen phosphate	HPO ₄ ²⁻	9.6	
magnesium	Mg ²⁺	3.6	
potassium	K⁺	19.5	
sodium	Na⁺	326.6	
	SO ₄ ²⁻	4.8	

Answer these questions using information from Table 2.1.

	(i)	Name the positive ion in Table 2.1 that is present in the lowest concentration in bloplasma.	boc
			[1]
	(ii)	Name the ion in Table 2.1 that contains an element in Group V of the Periodic Table.	
			[1]
(b)	Nar	me the compound containing Na ⁺ ions and SO ₄ ²⁻ ions.	
			[1]
(c)	Des	scribe a test for chloride ions.	
	test	t	
	obs	servations	
			 [2]

* 0019656651505 *

5

(d) Choose from the list the salt that is insoluble in water.

Tick (✓) one box.

calcium sulfate	
magnesium chloride	
potassium sulfate	
sodium chloride	

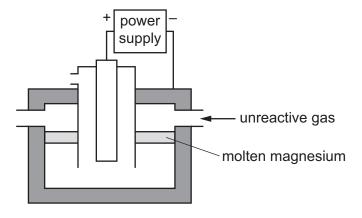
[1]

(e) Table 2.2 shows some properties of the Group I metals.

Table 2.2

metal	density in g/cm³	observations on reaction with water	
lithium	0.53	bubbles form very slowly and no flame	
sodium	0.97		
potassium	0.86	bubbles form very rapidly and flame	
rubidium		explodes	

Use the information in Table 2.2 to:


	suggest why it is difficult to predict the density of rubidium	
	describe the observations when sodium reacts with water.	
		[2]
(f)	State how the melting point of the Group I elements changes down the Group.	
		[1]
(g)	Sodium oxide, Na ₂ O, can be made by heating sodium in a limited supply of oxygen.	
	Complete the symbol equation for this reaction.	

[Total: 11]

[2]

.....Na + $O_2 \rightarrowNa_2O$

(a) Fig. 3.1 shows the apparatus used to electrolyse molten magnesium chloride.

6

Fig. 3.1

	(1)	Label the anode in Fig. 3.1.	[1]
	(ii)	Name a non-metal that can be used as the anode.	
			[1]
(iii)	Name the product formed at each electrode.	
		positive electrode	
		negative electrode	 [2]
(b)		your knowledge of the reactivity of magnesium to suggest why an unreactive gas is blow the electrolysis cell.	
(c)	Allo	ys of magnesium and aluminium are used to make aircraft.	
	Sta	te the meaning of the term alloy.	
		,	11

DO NOT WRITE IN THIS MARGIN

(i)	Write the formula of the ion that is present in all acids.
	[1]
(ii)	Name the gas produced when hydrochloric acid reacts with magnesium.
	[1]
iii)	Dilute hydrochloric acid is added to a solution of thymolphthalein in aqueous sodium hydroxide until the acid is in excess.
	State the colour change of the thymolphthalein.
	from to
iv)	Name the indicator that can be used to determine the pH of a sample of dilute hydrochloric acid.
	[1]

7

[1]

- 4 Some plants produce ethene gas.
 - (a) (i) Draw the displayed formula for a molecule of ethene.

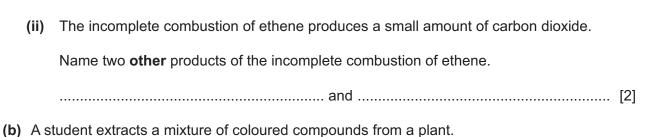


Fig. 4.1 shows the results of chromatography of this mixture.

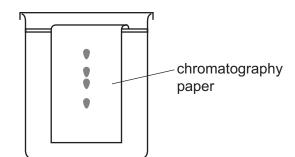


Fig. 4.1

- (i) Complete Fig. 4.1, to show:
 - where the mixture of coloured compounds is placed on the chromatography paper at the start of the chromatography
 - the level of the solvent at the start of the chromatography.

[2]

(ii) State two characteristics of a mixture.

1	
2	
_	
	[2]

[Total: 7]

* 0019656651509 *

9

5 (a) An atom of sulfur is represented by the symbol shown.

34 S

Describe this atom of sulfur in terms of:

- the position of the electrons, neutrons and protons in the atom
- the number of neutrons and number of protons
- the electronic configuration.

[5]

- (b) Sulfur burns to produce sulfur dioxide.
 - (i) State **one** adverse effect of sulfur dioxide in the air.
 - (ii) Complete the symbol equation for the reaction of sulfur dioxide with magnesium.

..... +
$$2Mg \rightarrowMgO + S$$
 [2]

(c) Fig. 5.1 shows the displayed formula of a compound of sulfur.

Fig. 5.1

Deduce the molecular formula of this compound.

(d) Another compound of sulfur has the formula Na₂S₂O₇.

Complete Table 5.1 to calculate the relative formula mass of $\mathrm{Na_2S_2O_7}$.

Table 5.1

10

type of atom	number of atoms	relative atomic mass	
sodium	2	23	2 × 23 = 46
sulfur		32	
oxygen		16	

relative formula mass = [2]

11

- 6 Solid nitrogen pentoxide, N₂O₅, decomposes to produce nitrogen dioxide gas and oxygen gas.
 - (a) Complete the equation by adding the missing state symbols.

$$2N_2O_5(s) \rightarrow 4NO_2(....) + O_2(....)$$
 [1]

(b) Fig. 6.1 shows how the mass of nitrogen pentoxide changes as the reaction proceeds.

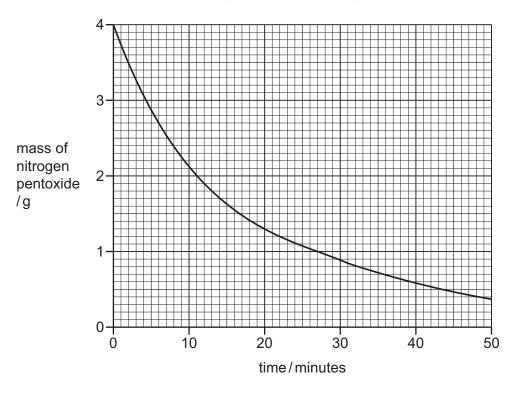


Fig. 6.1

- (i) On Fig. 6.1, draw an **X** to show where the rate of reaction is fastest. [1]
- (ii) Deduce the mass of nitrogen pentoxide 12 minutes from the start of the reaction.

.....[1

- (c) At 50 °C, the reactant and products are all gases.
 - (i) Describe the effect each of the following has on the rate of decomposition of nitrogen pentoxide.

All other conditions stay the same.

The pressure is decreased.

.....

A catalyst is added to the reaction mixture.

(ii) Increasing the concentration of nitrogen pentoxide increases the rate of decomposition.

Choose the correct unit of concentration from the list.

Draw a circle around your chosen answer.

 dm^3/g g/dm g/dm^2 g/dm^3 [1]

(d) Some oxides of nitrogen such as nitrogen dioxide are acidic air pollutants.

(i) Choose the pH value which is acidic.

Draw a circle around your chosen answer.

pH1 pH7 pH8 pH14 [1]

(ii) State one way of reducing the emissions of nitrogen dioxide in cars.

[1]

(e) Nitrogen dioxide is a yellow liquid which evaporates to form a brown gas at room temperature.

A long glass tube is set up as shown in Fig. 6.2.

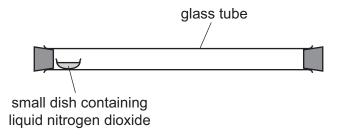


Fig. 6.2

At first, the brown gas can only be seen above the small dish. After a short time, the brown gas has completely filled the tube.

Explain these results in terms of kinetic particle theory.
[3]

* 0019656651613 *

13

- Iron and copper are transition elements. They are malleable and are good thermal and electrical conductors.
 - (a) State three other physical properties of iron.

1	
-	
2	
_	
3	
Ŭ	[3

(b) Fig. 7.1 shows some clean iron nails placed in four test-tubes, M, N, O and P, under different conditions.

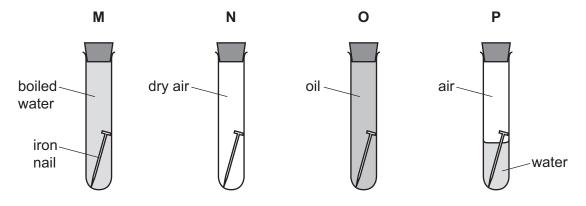
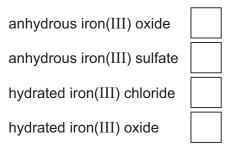



Fig. 7.1

- State in which test-tube, M, N, O or P, the iron nail is most likely to rust.
- Choose from the list the compound in rust.

Tick (✓) one box.

[1]

[2]

(c) Copper is used in electrical wiring because of its good electrical conductivity.

State one **other** reason why copper is used in electrical wiring.

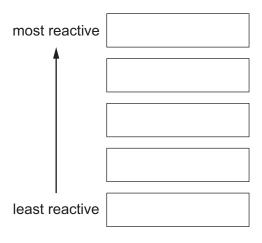
.....[1]

(d) Copper(II) oxide reacts with hydrochloric acid.

Complete the word equation for this reaction.

(e) Copper can be produced by heating copper(II) oxide in hydrogen.

$$CuO + H_2 \rightarrow Cu + H_2O$$


Describe how this equation shows that copper(II) oxide is reduced.

[1]

(f) The list shows five metals.

aluminium copper gold magnesium potassium

Put these metals in order of their reactivity. Put the most reactive metal at the top.

[2]

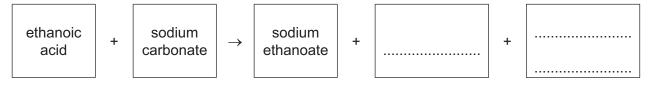
15

- 8 This question is about carboxylic acids and alkanes.
 - (a) Table 8.1 shows the names, formulae and boiling points of some carboxylic acids.

Table 8.1

name	formula	boiling point/°C			
methanoic acid	НСООН	101			
ethanoic acid	CH₃COOH	118			
propanoic acid	C ₂ H ₅ COOH	141			
butanoic acid	C ₃ H ₇ COOH	166			

Use the information in Table 8.1 to answer these questions.


(i) State the trend in the boiling points of the carboxylic acids.

.....[1]

(ii) Deduce the general formula for carboxylic acids.

......[1]

(b) (i) Complete the word equation for the reaction of ethanoic acid with sodium carbonate.

[2]

(ii) Choose the correct formula of sodium ethanoate from the list.

Draw a circle around your chosen answer.

 CH_3CH_2ONa CH_3CH_2COONa CH_3COONa $(CH_3COO)_2Na$ [1]

- (c) Methane, ethane and propane belong to the alkane homologous series.
 - (i) Define the term homologous series.

[0]

(ii) State the type of bonding in a methane molecule.

ra:	٦.
11	п
Lº.	J

(iii) State two types of reaction of the alkanes.

2[2]

* 0019656651617 *

17

BLANK PAGE

* 0019656651618 *

18

BLANK PAGE

* 0019656651619 *

19

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

* 0019656651620 *

The Periodic Table of Elements

												II															
	III/	2	He	helium 4	10	Ne	neon 20	18	Ą	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon -	118	Og	oganesson	ı				
	\				6	Щ	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	П	iodine 127	82	Αţ	astatine –	117	<u>S</u>	tennessine	I				
	 				80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ро	molodium –	116	_	livermorium	ı				
	>				7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Ξ	bismuth 209	115	Mc	moscovium	I				
	≥				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Ъ	lead 207	114	Fl	flerovium	ı				
					2	В	boron 11	13	A^l	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204	113	R	nihonium	ı				
											30	Zn	zinc 65	48	р	cadmium 112	80	Нg	mercury 201	112	Ö	copernicium	ı				
											29	Cn	copper 64	47	Ag	silver 108	79	Αn	gold 197	111	Rg	roentgenium	ı				
Group											28	Z	nickel 59	46	Pd	palladium 106	78	宀	platinum 195	110	Ds	darmstadtium	ı				
Gro											27	රි	cobalt 59	45	뫈	rhodium 103	77	٦	iridium 192	109	¥	meitherium	I				
		-	I	hydrogen 1							26	Ь	ion 56	4	Ru	ruthenium 101	9/	SO	osmium iridium 190 192 108 109	Hs	hassium	I					
											25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	pohrium	I				
						pol	ass								24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium	ı
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	<u>a</u>	tantalum 181	105	Op	dubnium	I				
								atc	ne.				22	F	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	쪼	rutherfordium	I		
											21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids						
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	S	strontium 88	56	Ва	barium 137	88	Ra	radium	ı				
	_				3	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	ВВ	rubidium 85	55	Cs	caesium 133	87	Ē	francium	ı				
																							-				

20

71	Γſ	lutetium 175	103	۲	lawrencium	I
70	Υþ	ytterbium 173	102	Š	nobelium	I
69	T	thulium 169	101	Md	mendelevium	ı
89	щ	erbium 167	100	Fm	fermium	I
29	운	holmium 165	66	Es	einsteinium	ı
99	ò	dysprosium 163	86	ರ	californium	I
65	Д	terbium 159	26	益	berkelium	ı
64	gq	gadolinium 157	96	CB	curium	I
63	En	europium 152	92	Am	americium	I
62	Sm	samarium 150	94	Pu	plutonium	ı
61	Pm	promethium -	93	δ	neptunium	ı
09	PN	neodymium 144	95	\supset	uranium	238
59	Ā	praseodymium 141	91	Pa	protactinium	231
58	Ce	cerium 140	06	H	thorium	232
22	Га	lanthanum 139	89	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).