

Cambridge International AS & A Level

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

MATHEMATICS 9709/22

Paper 2 Pure Mathematics 2

February/March 2025

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 12 pages.

	* 0000800000002 *
1	Solve the equation $ln(3x+1) - ln(x-1)$

1	Solve the equation $\ln(3x+1) - \ln(x-5) = \ln 7$.

Solve the equation $\ln(3x+1) - \ln(x-5) = \ln 7$.	[3
	••••••
	•••••

	A curve passes through the point with coordinates $\left(\frac{1}{2}\pi, 5\right)$ and is such that $\frac{dy}{dx} = 4\sec^2\left(\frac{1}{2}x\right)$.
	Find the equation of the curve.
•	
•	
•	
•	
•	
•	
•	
•	
•	

9709/22/F/M/25

y O

The diagram shows the curves $y = e^{2x}$ and $y = 8e^{-x}$. The shaded region is bounded by the two curves and the y-axis.

(b) Find the area of the shaded region.	[3]

A curve has equation $y = \frac{4 \sin x}{3 + \cos 2x}$ for values of x such that $0 \le x \le 2\pi$.

(a)	Find $\frac{dy}{dx}$.	[2]
(b)	Hence find the coordinates of the stationary points of the curve.	[4]

DO NOT WRITE IN THIS MARGIN

The x-coordinates of the points where the graphs intersect are denoted by α and β , where $\alpha < \beta$.

(b)	Show that $\alpha = 1.5 - 0.5 \ln(\alpha + 1)$.	[1
		•••••
		•••••
(c)	Use an iterative formula, based on the equation in part (b), to find the value of α corre	ect to
	3 significant figures. Give the result of each iteration to 5 significant figures.	Г3

• • • • •

(d)	Show by calculation that $2.055 < \beta < 2.065$.	[2]
		••••

* 0000800000007 *	

(a)	Find the quotient and remainder when $18x^3 - 6x^2 - 30x + 4$ is divided by $(3x - 1)$.
(b)	Hence find $\int_{1}^{5} \frac{18x^3 - 6x^2 - 30x + 4}{3x - 1} dx$. Give your answer in the form $a - \ln b$, where a and b and
	integers.

correct to 2 decimal places.	
 	•••••

DO NOT WRITE IN THIS MARGIN

	Hence solve the equation $6 \sin \theta - 4 \cos \theta + 5 = 0$ for $0^{\circ} < \theta < 360^{\circ}$.
	As the value of B varies find the greatest nossible value of
,	As the value of β varies, find the greatest possible value of
	$(3\sin 4\beta - 2\cos 4\beta)^2 + 15$
	$(3\sin 4\beta - 2\cos 4\beta)^2 + 15$
	$(3\sin 4\beta - 2\cos 4\beta)^2 + 15$
	$(3\sin 4\beta - 2\cos 4\beta)^2 + 15$
	$(3\sin 4\beta - 2\cos 4\beta)^2 + 15$
	$(3\sin 4\beta - 2\cos 4\beta)^2 + 15$
	$(3\sin 4\beta - 2\cos 4\beta)^2 + 15$
	$(3\sin 4\beta - 2\cos 4\beta)^2 + 15$
	$(3\sin 4\beta - 2\cos 4\beta)^2 + 15$
	$(3\sin 4\beta - 2\cos 4\beta)^2 + 15$
	$(3\sin 4\beta - 2\cos 4\beta)^2 + 15$
	$(3\sin 4\beta - 2\cos 4\beta)^2 + 15$
	$(3\sin 4\beta - 2\cos 4\beta)^2 + 15$
	$(3\sin 4\beta - 2\cos 4\beta)^2 + 15$
	$(3\sin 4\beta - 2\cos 4\beta)^2 + 15$
	$(3\sin 4\beta - 2\cos 4\beta)^2 + 15$
	$(3\sin 4\beta - 2\cos 4\beta)^2 + 15$

(a)

8 A curve has equation $3e^{2x}y + 4e^{3x} + y^3 = 18$.

Show that $\frac{dy}{dx} = \frac{-2e^{2x}y - 4e^{3x}}{e^{2x} + y^2}.$	[4]
$dx \qquad e^{2x} + y^2$	
	••••••
	••••••••••
	•••••
	•••••

* 0000800000011 *

(b)	Show that the curve has no stationary points.		

Additional page

12

If you use the following page to complete the answer to any question, the question number must be clearly shown.
Permission to reproduce items where third-party owned material protected by convight is included has been sought and cleared where possible. Every

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

